Surfing for Science: A Fin Sensor Is Making Waves
For David Walden, a Southern Californian, surfing is a lifestyle, not a hobby. The 38-year-old works nights at a seafood restaurant to leave his mornings free for surfing.
While the surfers are doing what they love, they are also collecting information that is helping scientists better understand the ocean.
"Once you fall in love with the ocean, you need it like a daily cleanse or refresher," he says. "The positive mental and physical effects of the ocean, the endorphins and dopamine, keep you addicted in a good way."
Given his dedication to surfing, Walden was delighted when he became one of more than 200 surfers last year to test Smartfin, a 5-1/2-inch surfboard fin that contains a circuit board, a rechargeable battery, a GPS device, a sensor that captures temperature to one-hundredth of a degree, and a motion sensor that tracks the movement of the waves. While Walden and his fellow surfers are doing what they love, they are also collecting information that is helping scientists better understand the health of the near-shore ocean and how its chemistry is shifting due to climate change.
"I'm excited to be a part of it," Walden says. "I like to tell people I surf for science."
Back on shore, the surfers download the Smartfin data via a smartphone app so they can be accessed by scientists and other interested parties. (You can see where Smartfin surfers go at this interactive map.)
By putting sensors directly onto surfboards, oceanographers can collect data to help them better understand the global-warming related changes occurring in coastal oceans in temperature, salinity, and pH, all properties that have huge implications for the species that live in near-shore ecosystems.
There is much unknown about coastal waters because it's so difficult to obtain meaningful measurements. Traditional methods to monitor the close shore, such as bottle samples and buoys, are time consuming and expensive and tend to get damaged by the surf.
The Smartfin is the brainchild of Dr. Andy Stern, a retired neurologist. He and his brother-in-law, sculptor and filmmaker Todd McGrain, run The Lost Bird Project, a nonprofit devoted to raising awareness about climate change and other environmental issues. Stern brought his super fin idea to engineer Benjamin Thompson, who spent several years creating a prototype in his garage workshop. Smartfin was further developed by scientists at the Scripps Institution of Oceanography at the University of California at San Diego.
"The big challenge was to make a sensor small enough to fit in the fin but still produce good measurements," says Andreas Andersson, an associate professor of geoscience research at Scripps.
The Surfrider Foundation, a surfer-led nonprofit environmental organization, came aboard two years ago to distribute the Smartfin to its San Diego members.
Smartfin has also made a splash with scientists at the University of the Sunshine Coast in Queensland on the eastern coast of Australia. They are using the fin's temperature sensor to better understand how climate change is affecting the movement and distribution of marine life. And at the Plymouth Marine Laboratory in Plymouth, United Kingdom, the Smartfin's precise temperature readings of the near-shore ocean's surface are being used to improve the accuracy of satellites that monitor the ocean from hundreds of miles away.
"It's hard to talk about climate change in a way that's not boring or gloomy, but there's nothing gloomy or depressing about surfers and Smartfin."
"The hope is that Smartfin will improve the satellite measurements, which could improve the retrieval of temperature data around the world," says Dr. Phil Bresnahan, Smartfin's lead engineer at Scripps. In the future, the fin will include sensors to measure pH, chlorophyll (algae), dissolved oxygen, and turbidity (water clarity).
Stern envisions a time when thousands of surfers, paddle boarders, and other water enthusiasts worldwide will have Smartfins and be downloading data for scientists and environmentalists. Right now, there are approximately 70 surfers in the San Diego area using Smartfin and an additional 30 globally.
Scientists have plenty of evidence that global warming is largely caused by humans. Now they are trying to figure out what the long-term effects of climate change may be. For example, scientists are trying to predict which sections of coral reef, which house 25 percent of marine species, are most vulnerable so interventions can be developed to save them. Because of its small size, Smartfin is ideal to measure temperature changes in coral reefs.
Smartfin was also intended to be an educational tool. "It's a great way to start a different conversation about climate change," says Stern. "It's hard to talk about climate change in a way that's not boring or gloomy, but there's nothing gloomy or depressing about surfers and Smartfin. People want to hear more."
Turning surfers into citizen scientists makes perfect sense, says David Pasquini, 35, a longtime surfer who works for the British Consulate General's office in Oceanside, Calif. "Anyone who spends a lot of time in the ocean is aware of the changes happening in the ecosystem, the climate," says Pasquini. "Everyone asks, 'What can I do?'" Surfing with Smartfin, Pasquini feels like he is giving back.
"I know the data will be analyzed and eventually used to make a policy that helps with climate change. That's a great feeling--just by surfing, doing something you love, you're contributing."
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.