New tools could catch disease outbreaks earlier - or predict them
Every year, the villages which lie in the so-called ‘Nipah belt’— which stretches along the western border between Bangladesh and India, brace themselves for the latest outbreak. For since 1998, when Nipah virus—a form of hemorrhagic fever most common in Bangladesh—first spilled over into humans, it has been a grim annual visitor to the people of this region.
With a 70 percent fatality rate, no vaccine, and no known treatments, Nipah virus has been dubbed in the Western world as ‘the worst disease no one has ever heard of.’ Currently, outbreaks tend to be relatively contained because it is not very transmissible. The virus circulates throughout Asia in fruit eating bats, and only tends to be passed on to people who consume contaminated date palm sap, a sweet drink which is harvested across Bangladesh.
But as SARS-CoV-2 has shown the world, this can quickly change.
“Nipah virus is among what virologists call ‘the Big 10,’ along with things like Lassa fever and Crimean Congo hemorrhagic fever,” says Noam Ross, a disease ecologist at New York-based non-profit EcoHealth Alliance. “These are pretty dangerous viruses from a lethality perspective, which don’t currently have the capacity to spread into broader human populations. But that can evolve, and you could very well see a variant emerge that has human-human transmission capability.”
That’s not an overstatement. Surveys suggest that mammals harbour about 40,000 viruses, with roughly a quarter capable of infecting humans. The vast majority never get a chance to do so because we don’t encounter them, but climate change can alter that. Recent studies have found that as animals relocate to new habitats due to shifting environmental conditions, the coming decades will bring around 300,000 first encounters between species which normally don’t interact, especially in tropical Africa and southeast Asia. All these interactions will make it far more likely for hitherto unknown viruses to cross paths with humans.
That’s why for the last 16 years, EcoHealth Alliance has been conducting ongoing viral surveillance projects across Bangladesh. The goal is to understand why Nipah is so much more prevalent in the western part of the country, compared to the east, and keep a watchful eye out for new Nipah strains as well as other dangerous pathogens like Ebola.
"There are a lot of different infectious agents that are sensitive to climate change that don't have these sorts of software tools being developed for them," says Cat Lippi, medical geography researcher at the University of Florida.
Until very recently this kind of work has been hampered by the limitations of viral surveillance technology. The PREDICT project, a $200 million initiative funded by the United States Agency for International Development, which conducted surveillance across the Amazon Basin, Congo Basin and extensive parts of South and Southeast Asia, relied upon so-called nucleic acid assays which enabled scientists to search for the genetic material of viruses in animal samples.
However, the project came under criticism for being highly inefficient. “That approach requires a big sampling effort, because of the rarity of individual infections,” says Ross. “Any particular animal may be infected for a couple of weeks, maybe once or twice in its lifetime. So if you sample thousands and thousands of animals, you'll eventually get one that has an Ebola virus infection right now.”
Ross explains that there is now far more interest in serological sampling—the scientific term for the process of drawing blood for antibody testing. By searching for the presence of antibodies in the blood of humans and animals, scientists have a greater chance of detecting viruses which started circulating recently.
Despite the controversy surrounding EcoHealth Alliance’s involvement in so-called gain of function research—experiments that study whether viruses might mutate into deadlier strains—the organization’s separate efforts to stay one step ahead of pathogen evolution are key to stopping the next pandemic.
“Having really cheap and fast surveillance is really important,” says Ross. “Particularly in a place where there's persistent, low level, moderate infections that potentially have the ability to develop into more epidemic or pandemic situations. It means there’s a pathway that something more dangerous can come through."
Scientists are searching for the presence of antibodies in the blood of humans and animals in hopes to detect viruses that recently started circulating.
EcoHealth Alliance
In Bangladesh, EcoHealth Alliance is attempting to do this using a newer serological technology known as a multiplex Luminex assay, which tests samples against a panel of known antibodies against many different viruses. It collects what Ross describes as a ‘footprint of information,’ which allows scientists to tell whether the sample contains the presence of a known pathogen or something completely different and needs to be investigated further.
By using this technology to sample human and animal populations across the country, they hope to gain an idea of whether there are any novel Nipah virus variants or strains from the same family, as well as other deadly viral families like Ebola.
This is just one of several novel tools being used for viral discovery in surveillance projects around the globe. Multiple research groups are taking PREDICT’s approach of looking for novel viruses in animals in various hotspots. They collect environmental DNA—mucus, faeces or shed skin left behind in soil, sediment or water—which can then be genetically sequenced.
Five years ago, this would have been a painstaking work requiring bringing collected samples back to labs. Today, thanks to the vast amounts of money spent on new technologies during COVID-19, researchers now have portable sequencing tools they can take out into the field.
Christopher Jerde, a researcher at the UC Santa Barbara Marine Science Institute, points to the Oxford Nanopore MinION sequencer as one example. “I tried one of the early versions of it four years ago, and it was miserable,” he says. “But they’ve really improved, and what we’re going to be able to do in the next five to ten years will be amazing. Instead of having to carefully transport samples back to the lab, we're going to have cigar box-shaped sequencers that we take into the field, plug into a laptop, and do the whole sequencing of an organism.”
In the past, viral surveillance has had to be very targeted and focused on known families of viruses, potentially missing new, previously unknown zoonotic pathogens. Jerde says that the rise of portable sequencers will lead to what he describes as “true surveillance.”
“Before, this was just too complex,” he says. “It had to be very focused, for example, looking for SARS-type viruses. Now we’re able to say, ‘Tell us all the viruses that are here?’ And this will give us true surveillance – we’ll be able to see the diversity of all the pathogens which are in these spots and have an understanding of which ones are coming into the population and causing damage.”
But being able to discover more viruses also comes with certain challenges. Some scientists fear that the speed of viral discovery will soon outpace the human capacity to analyze them all and assess the threat that they pose to us.
“I think we're already there,” says Jason Ladner, assistant professor at Northern Arizona University’s Pathogen and Microbiome Institute. “If you look at all the papers on the expanding RNA virus sphere, there are all of these deposited partial or complete viral sequences in groups that we just don't know anything really about yet.” Bats, for example, carry a myriad of viruses, whose ability to infect human cells we understand very poorly.
Cultivating these viruses under laboratory conditions and testing them on organoids— miniature, simplified versions of organs created from stem cells—can help with these assessments, but it is a slow and painstaking work. One hope is that in the future, machine learning could help automate this process. The new SpillOver Viral Risk Ranking platform aims to assess the risk level of a given virus based on 31 different metrics, while other computer models have tried to do the same based on the similarity of a virus’s genomic sequence to known zoonotic threats.
However, Ladner says that these types of comparisons are still overly simplistic. For one thing, scientists are still only aware of a few hundred zoonotic viruses, which is a very limited data sample for accurately assessing a novel pathogen. Instead, he says that there is a need for virologists to develop models which can determine viral compatibility with human cells, based on genomic data.
“One thing which is really useful, but can be challenging to do, is understand the cell surface receptors that a given virus might use,” he says. “Understanding whether a virus is likely to be able to use proteins on the surface of human cells to gain entry can be very informative.”
As the Earth’s climate heats up, scientists also need to better model the so-called vector borne diseases such as dengue, Zika, chikungunya and yellow fever. Transmitted by the Aedes mosquito residing in humid climates, these blights currently disproportionally affect people in low-income nations. But predictions suggest that as the planet warms and the pests find new homes, an estimated one billion people who currently don’t encounter them might be threatened by their bites by 2080. “When it comes to mosquito-borne diseases we have to worry about shifts in suitable habitat,” says Cat Lippi, a medical geography researcher at the University of Florida. “As climate patterns change on these big scales, we expect to see shifts in where people will be at risk for contracting these diseases.”
Public health practitioners and government decision-makers need tools to make climate-informed decisions about the evolving threat of different infectious diseases. Some projects are already underway. An ongoing collaboration between the Catalan Institution for Research and Advanced Studies and researchers in Brazil and Peru is utilizing drones and weather stations to collect data on how mosquitoes change their breeding patterns in response to climate shifts. This information will then be fed into computer algorithms to predict the impact of mosquito-borne illnesses on different regions.
The team at the Catalan Institution for Research and Advanced Studies is using drones and weather stations to collect data on how mosquito breeding patterns change due to climate shifts.
Gabriel Carrasco
Lippi says that similar models are urgently needed to predict how changing climate patterns affect respiratory, foodborne, waterborne and soilborne illnesses. The UK-based Wellcome Trust has allocated significant assets to fund such projects, which should allow scientists to monitor the impact of climate on a much broader range of infections. “There are a lot of different infectious agents that are sensitive to climate change that don't have these sorts of software tools being developed for them,” she says.
COVID-19’s havoc boosted funding for infectious disease research, but as its threats begin to fade from policymakers’ focus, the money may dry up. Meanwhile, scientists warn that another major infectious disease outbreak is inevitable, potentially within the next decade, so combing the planet for pathogens is vital. “Surveillance is ultimately a really boring thing that a lot of people don't want to put money into, until we have a wide scale pandemic,” Jerde says, but that vigilance is key to thwarting the next deadly horror. “It takes a lot of patience and perseverance to keep looking.”
This article originally appeared in One Health/One Planet, a single-issue magazine that explores how climate change and other environmental shifts are increasing vulnerabilities to infectious diseases by land and by sea. The magazine probes how scientists are making progress with leaders in other fields toward solutions that embrace diverse perspectives and the interconnectedness of all lifeforms and the planet.
Here's something to chew on. Can a gulp of water help save the planet? If you're drinking *and* eating your water at the same time, the answer may be yes.
The tasteless packaging is made from brown seaweed that biodegrades naturally in four to six weeks.
The Lowdown
A start-up company called Skipping Rocks Lab has created a "water bubble" encased in an edible sachet that you can pop in your mouth whole. Or if you're not into swallowing it, you can tear off the edge, drink up, and toss the rest in a composter. The tasteless packaging is made from brown seaweed that biodegrades naturally in four to six weeks, whereas plastic water bottles can linger for hundreds of years.
The founders of the London-based company are determined to "make plastic packaging disappear." They had two foodie inspirations: molecular gastronomists and fruit. They tried to emulate the way chefs used edible membranes to encase bubbles of liquid to make things like fake caviar and fake egg yolks; and they also considered the peel of an orange or banana, which protects the tasty insides but can be composted.
The sachets can also contain other liquids that come in single-serve plastic containers -- think packets of condiments with takeout meals, specialty cocktails at parties, and especially single servings of water for sporting events. The London Marathon last month gave out the water bubble pods at a station along the route, using them to replace 200,000 plastic bottles that would have likely ended up first in the street, and ultimately in the ocean.
Next Up
The engineers and chemists at Skipping Rocks intend to lease their machines to others who can then manufacture their own sachets on-site to fill with whatever they desire. The new material, which is dubbed "Notpla" (not plastic), also has other applications beyond holding liquids. It can be used to replace the plastic lining in cardboard takeout boxes, for example. And the startup is working on additional materials to replace other types of ubiquitous plastic packaging, like the netting that encases garlic and onions, and the sachets that hold nails and screws.
Edible water bubbles may be the future of drinks at sporting events and festivals.
Open Questions
One hurdle is that the pods are not very hardy, so while they work fine to hand out along a marathon route, they wouldn't really be viable for a hiker to throw in her backpack. Another issue concerns the retail market: to be stable on a shelf, they'd have to be protected from all that handling, which brings us back to the problem the engineers tried to solve in the first place -- disposable packaging.
So while Skipping Rocks may not achieve their ultimate goal of ridding the world of plastic waste, a little progress can still go a long way. If edible water bubbles are the future of drinks at sporting events and festivals, the environment will certainly benefit from their presence -- and absence.
The Internet has made it easier than ever to misguide people. The anti-vaxx movement, climate change denial, protests against stem cell research, and other movements like these are rooted in the spread of misinformation and a distrust of science.
"I had been taught intelligent design and young-earth creationism instead of evolution, geology, and biology."
Science illiteracy is pervasive in the communities responsible for these movements. For the mainstream, the challenge lies not in sharing the facts, but in combating the spread of misinformation and facilitating an open dialogue between experts and nonexperts.
I grew up in a household that was deeply skeptical of science and medicine. My parents are evangelical Christians who believe the word of the Bible is law. To protect my four siblings and me from secular influence, they homeschooled some of us and put the others in private Christian schools. When my oldest brother left for a Christian college and the tuition began to add up, I was placed in a public charter school to offset the costs.
There, I became acutely aware of my ignorant upbringing. I had been taught intelligent design and young-earth creationism instead of evolution, geology, and biology. My mother skipped over world religions, and much of my history curriculum was more biblical-based than factual. She warned me that stem cell research, vaccines, genetic modification of crops, and other areas of research in biological science were examples of humans trying to be like God. At the time, biologist Richard Dawkins' The God Delusion was a bestseller and science seemed like an excuse to not believe in God, so she and my father discouraged me from studying it.
The gaps in my knowledge left me feeling frustrated and embarrassed. The solution was to learn about the things that had been censored from my education, but several obstacles stood in the way.
"When I first learned about fundamentalism, my parents' behavior finally made sense."
I lacked a good foundation in basic mathematics after being taught by my mother, who never graduated college. My father, who holds a graduate degree in computer science, repeatedly told me that I inherited my mother's "bad math genes" and was therefore ill-equipped for science. While my brothers excelled at math under his supervision and were even encouraged toward careers in engineering and psychology, I was expected to do well in other subjects, such as literature. When I tried to change this by enrolling in honors math and science classes, they scolded me -- so reluctantly, I dropped math. By the time I graduated high school, I was convinced that math and science were beyond me.
When I look back at my high school transcripts, that sense of failure was unfounded: my grades were mostly A's and B's, and I excelled in honors biology. Even my elementary standardized test scores don't reflect a student disinclined toward STEM, because I consistently scored in the top percentile for sciences. Teachers often encouraged me to consider studying science in college. Why then, I wondered, did my parents reject that idea? Why did they work so hard to sway me from that path? It wasn't until I moved away from my parents' home and started working to put myself through community college that I discovered my passion for both biology and science writing.
As a young adult venturing into the field of science communication, I've become fascinated with understanding communities that foster antagonistic views toward science. When I first learned about fundamentalism, my parents' behavior finally made sense. It is the foundation of the Religious Right, a right-wing Christian group which heavily influences the Republican party in the United States. The Religious Right crusades against secular education, stem cell research, abortion, evolution, and other controversial issues in science and medicine on the basis that they contradict Christian beliefs. They are quietly overturning the separation of church and state in order to enforce their religion as policy -- at the expense of science and progress.
Growing up in this community, I learned that strong feelings about these issues arise from both a lack of science literacy and a distrust of experts. Those who are against genetic modification of crops don't understand that GMO research aims to produce more, and longer-lasting, food for a growing planet. The anti-vaxx movement is still relying on a deeply flawed study that was ultimately retracted. Those who are against stem cell research don't understand how it works or the important benefits it provides the field of medicine, such as discovering new treatment methods.
In fact, at one point the famous Christian radio show Focus on the Family spread anti-vaxx mentality when they discussed vaccines that, long ago, were derived from aborted fetal cells. Although Focus on the Family now endorses vaccines, at the time it was enough to convince my own mother, who listened to the show every morning, not to vaccinate us unless the law required it.
"In everyday interactions with skeptics, science communicators need to shift their focus from convincing to discussing."
We can help clear up misunderstandings by sharing the facts, but the real challenge lies in willful ignorance. It was hard for me to accept, but I've come to understand that I'm not going to change anyone's mind. It's up to an individual to evaluate the facts, consider the arguments for and against, and make his or her own decision.
As my parents grew older and my siblings and I introduced them to basic concepts in science, they came around to trusting the experts a little more. They now see real doctors instead of homeopathic practitioners. They acknowledge our world's changing climate instead of denying it. And they even applaud two of their children for pursuing careers in science. Although they have held on to their fundamentalism and we still disagree on many issues, these basic changes give me hope that people in deeply skeptical communities are not entirely out of reach.
In everyday interactions with skeptics, science communicators need to shift their focus from convincing to discussing. This means creating an open dialogue with the intention of being understanding and helpful, not persuasive. This approach can be beneficial in both personal and online interactions. There are people within these movements who have doubts, and their doubts will grow as we continue to feed them through discussion.
People will only change their minds when it is the right time for them to do so. We need to be there ready to hold their hand and lead them toward truth when they reach out. Until then, all we can do is keep the channels of communication open, keep sharing the facts, and fight the spread of misinformation. Science is the pursuit of truth, and as scientists and science communicators, sometimes we need to let the truth speak for itself. We're just there to hold the megaphone.