Is Carbon Dioxide the New Black? Yes, If These Fabric-Designing Scientists Have Their Way
Each year the world releases around 33 billion tons of carbon dioxide into the atmosphere. What if we could use this waste carbon dioxide to make shirts, dresses and hats? It sounds unbelievable. But two innovators are trying to tackle climate change in this truly unique way.
Chemist Tawfiq Nasr Allah set up Fairbrics with material scientist Benoît Illy in 2019. They're using waste carbon dioxide from industrial fumes as a raw material to create polyester, identical to the everyday polyester we use now. They want to take a new and very different approach to make the fashion industry more sustainable.
The Dark Side of Fast Fashion
The fashion industry is responsible for around 4% of global emissions. In a 2015 report, the MIT Materials Systems Laboratory predicted that the global impact of polyester fabric will grow from around 880 billion kg of CO2 in 2015 to 1.5 trillion kg of CO2 by 2030.
Professor Greg Peters, an expert in environmental science and sustainability, highlights the wide-ranging difficulties caused by the production of polyester. "Because it is made from petrochemical crude oil there is no real limit on how much polyester can be produced...You have to consider the ecological damage (oil spills, fracking etc.) caused by the oil and gas industry."
Many big-name brands have pledged to become carbon neutral by 2050. But nothing has really changed in the way polyester is produced.
Some companies are recycling plastic bottles into polyester. The plastic is melted into ultra-fine strands and then spun to create polyester. However, only a limited number of bottles are available. New materials must be added because of the amount of plastic degradation that takes place. Ultimately, recycling accounts for only a small percentage of the total amount of polyester produced.
Nasr Allah and Illy hope they can offer the solution the fashion industry is looking for. They are not just reducing the carbon emissions that are conventionally produced by making polyester. Their process actually goes much further. It's carbon negative and works by using up emissions from other industries.
"In a sense we imitate what nature does so well: plants capture CO2 and turn it into natural fibers using sunlight, we capture CO2 and turn it into synthetic fibers using electricity."
Experts in the field see a lot of promise. Dr Phil de Luna is an expert in carbon valorization -- the process of converting carbon dioxide into high-value chemicals. He leads a $57-million research program developing the technology to decarbonize Canada.
"I think the approach is great," he says. "Being able to take CO2 and then convert it into polymers or polyester is an excellent way to think about utilizing waste emissions and replacing fossil fuel-based materials. That is overall a net negative as compared to making polyester from fossil fuels."
From Harmful Waste to Useful Raw Material
It all started with Nasr Allah's academic research, primarily at the French Alternative Energies and Atomic Energy Commission (CEA). He spent almost 5 years investigating CO2 valorization. In essence, this involves breaking the bonds between the carbon and oxygen atoms in CO2 to create bonds with other elements.
Recycling carbon dioxide in this way requires extremely high temperatures and pressures. Catalysts are needed to break the strong bonds between the atoms. However, these are toxic, volatile and quickly lose their effectiveness over time. So, directly converting carbon dioxide into the raw material for making polyester fibers is very difficult.
Nasr Allah developed a process involving multiple simpler stages. His innovative approach involves converting carbon dioxide to intermediate chemicals. These chemicals can then be transformed into the raw material which is used in the production of polyester. After many experiments, Nasr Allah developed new processes and new catalysts that worked more effectively.
"We use a catalyst to transform CO2 into the chemicals that are used for polyester manufacturing," Illy says. "In a sense we imitate what nature does so well: plants capture CO2 and turn it into natural fibers using sunlight, we capture CO2 and turn it into synthetic fibers using electricity."
The Challenges Ahead
Nasr Allah met material scientist Illy through Entrepreneur First, a programme which pairs individuals looking to form technical start-ups. Together they set up Fairbrics and worked on converting Nasr Allah's lab findings into commercial applications and industrial success.
"The main challenge we faced was to scale up the process," Illy reveals. "[It had to be] consistent and safe to be carried out by a trained technician, not a specialist PhD as was the case in the beginning."
They recruited a team of scientists to help them develop a more effective and robust manufacturing process. Together, the team gained a more detailed theoretical understanding about what was happening at each stage of the chemical reactions. Eventually, they were able to fine tune the process and produce consistent batches of polyester.
They're making significant progress. They've produced their first samples and signed their first commercial contract to make polyester, which will then be both fabricated into clothes and sold by partner companies.
Currently, one of the largest challenges is financial. "We need to raise a fair amount to buy the equipment we need to produce at a large scale," Illy explains.
How to Power the Process?
At the moment, their main scientific focus is getting the process working reliably so they can begin commercialization. In order to remain sustainable and economically viable once they start producing polyester on a large scale, they need to consider the amount of energy they use for carbon valorization and the emissions they produce.
The more they optimize the way their catalyst works, the easier it will be to transform the CO2. The whole process can then become more cost effective and energy efficient.
De Luna explains: "My concern is...whether their process will be economical at scale. The problem is the energy cost to take carbon dioxide and transform it into these other products and that's where the science and innovation has to happen. [Whether they can scale up economically] depends on the performance of their catalyst."
They don't just need to think about the amount of energy they use to produce polyester; they also have to consider where this energy comes from.
"They need access to cheap renewable energy," De Luna says, "...so they're not using or emitting CO2 to do the conversion." If the energy they use to transform CO2 into polyester actually ends up producing more CO2, this will end up cancelling out their positive environmental impact.
Based in France, they're well located to address this issue. France has a clean electricity system, with only about 10% of their electric power coming from fossil fuels due to their reliance on nuclear energy and renewables.
Where Do They Get the Carbon Dioxide?
As they scale up, they also need to be able to access a source of CO2. They intend to obtain this from the steel industry, the cement industry, and hydrogen production.
The technology to purify and capture waste carbon dioxide from these industries is available on a large scale. However, there are only around 20 commercial operations in the world. The high cost of carbon capture means that development continues to be slow. There are a growing number of startups capturing carbon dioxide straight from the air, but this is even more costly.
One major problem is that storing captured carbon dioxide is expensive. "There are somewhat limited options for permanently storing captured CO2, so innovations like this are important,'' says T. Reed Miller, a researcher at the Yale University Center for Industrial Ecology.
Illy says: "The challenge is now to decrease the cost [of carbon capture]. By using CO2 as a raw material, we can try to increase the number of industries that capture CO2. Our goal is to turn CO2 from a waste into a valuable product."
Beyond Fashion
For Nasr Allah and Illy, fashion is just the beginning. There are many markets they can potentially break into. Next, they hope to use the polyester they've created in the packaging industry. Today, a lot of polyester is consumed to make bottles and jars. Illy believes that eventually they can produce many different chemicals from CO2. These chemicals could then be used to make paints, adhesives, and even plastics.
The Fairbrics scientists are providing a vital alternative to fossil fuels and showcasing the real potential of carbon dioxide to become a worthy resource instead of a harmful polluter.
Illy believes they can make a real difference through innovation: "We can have a significant impact in reducing climate change."
Democratize the White Coat by Honoring Black, Indigenous, and People of Color in Science
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
Journalists, educators, and curators have responded to Black Lives Matter by highlighting the history and achievements of Black Americans in a variety of fields, including science. The movement has also sparked important demands to address longstanding scientific inequities such as lack of access to quality healthcare and the disproportionate impact of climate change and environmental pollution on neighborhoods of Black, Indigenous, and people of color (BIPOC). Making such improvements requires bringing BIPOC into science and into positions of leadership in laboratories, graduate schools, medical practices, and clinical trials. The moment is right to challenge scientific gatekeepers to respond to Black Lives Matter by widening the pathways that determine who becomes a scientist, a researcher, or a clinician.
The scientific workforce has long lacked diversity, which in turn discourages Black people from pursuing such careers. Causes include a dearth of mentors and role models, preconceived notions that science is exclusive to white males, and subpar STEM education. Across race, gender, class, ability, and all other dimensions that inform how an individual navigates the world, from the familial to the global level, seeing role models who resemble you impacts what you strive for and believe possible. As Marian Wright Edelman stated, "You can't be what you can't see"—a truth with ever-increasing resonance since the U.S. is projected to be minority-white by 2045.
Black Americans have paved the way for the nation to lead in science and technology, despite marginalization and exclusion from textbooks. Physicist Dr. Shirley Ann Jackson invented the technology behind Caller I.D. and Call Waiting. Otis Boykin's patents made televisions and radios what they are today. Thanks to the 2017 movie Hidden Figures, millions of Americans know about Katherine Johnson, the NASA mathematician whose calculations were essential to the successful trajectory of the Apollo 11 mission.
However, highlighting past role models who were Black achievers is not enough and paints too static a picture—especially when examples of transformative work by contemporary BIPOC scientists serving BIPOC communities abound. Cognitive neuroscientist Dr. Jonathan Jackson founded the Community Access, Recruitment, & Engagement (CARE) Research Center with the goal to break down barriers so that people of color participate in clinical trials. Geneticist Dr. Nanibaa' Garrison's research creates ethical frameworks to overcome genomic injustices so Indigenous populations can benefit from genetic research. Computer scientists Joy Buolamwini and Dr. Timnit Gebru's research drew attention to reinforced racial bias in artificial intelligence, leading Microsoft, Amazon, and IBM this summer to halt use of their facial recognition software.
"Integration does not mean equality if the space being integrated isn't exuberantly down for the cause."
In order to honor concretely the ubiquitous public statements and commitments to justice and equity that flooded everyone's inboxes in early June, we must include traditionally underrepresented voices in all phases of science and its applications. For guidance, we would benefit from listening to activists leading, for example, climate marches and protests over toxic water. Indeed, science is at the core of the issues for which young BIPOC are mobilizing. We need to sit down with these individuals to gain their input on how the narratives, practices, and opportunities in science should change. As Zeena Abdulkarim, a youth climate change organizer working with Zero Hour, explains: "Minority communities are exposed to what the privileged and people in power are not; therefore these communities know the right steps to take in the change we need for the kickstart of true social and environmental justice."
Two other Black youth, for example, used the platform of the laboratory while in high school to mobilize for change. Elle Lanair Lett, now specializing in epidemiology as an M.D.-Ph.D. student in Philadelphia, was prompted by family prevalence of diabetes to research the genetics of pancreatic cells. Dr. Otana Jakpor, now an ophthalmology resident in Michigan, was motivated by the pollution in her hometown of Riverside, California, to research the pulmonary effects of indoor air purifiers, with findings that influenced California ozone regulations. Both became finalists in a national science fair, propelling them on paths toward science careers. These young scientists demonstrate how people's communities and lived experiences can shape trajectories of science research, which, in turn, determines which visions for society are materialized and popularized.
We can also gain insight from another childhood science fair veteran, self-proclaimed "Black STEMinist" Augusta Uwamanzu-Nna, who graduated from college in May and works as a bioengineer. In her view, "we need to shift the burden away from Black people and onto individuals who have contributed to our current reality—fundamentally requiring understanding, open-mindedness, a lack of bias, cultural competency, anti-racism, anti-homophobia, and many, many other things."
Celebrating BIPOC's accomplishments in science and cultivating new leadership today are strong first steps to make science a guiding force for all. Ms. Uwamanzu-Nna keenly reminds us, "Integration does not mean equality if the space being integrated isn't exuberantly down for the cause." Indeed, educational institutions, scientific companies, and medical centers must acknowledge and embrace their role in democratizing science in order for society to realize racial and scientific justice.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
Alethea.ai sports a grid of faces smiling, blinking and looking about. Some are beautiful, some are oddly familiar, but all share one thing in common—they are fake.
Alethea creates "synthetic media"— including digital faces customers can license saying anything they choose with any voice they choose. Companies can hire these photorealistic avatars to appear in explainer videos, advertisements, multimedia projects or any other applications they might dream up without running auditions or paying talent agents or actor fees. Licenses begin at a mere $99. Companies may also license digital avatars of real celebrities or hire mashups created from real celebrities including "Don Exotic" (a mashup of Donald Trump and Joe Exotic) or "Baby Obama" (a large-eared toddler that looks remarkably similar to a former U.S. President).
Naturally, in the midst of the COVID pandemic, the appeal is understandable. Rather than flying to a remote location to film a beer commercial, an actor can simply license their avatar to do the work for them. The question is—where and when this tech will cross the line between legitimately licensed and authorized synthetic media to deep fakes—synthetic videos designed to deceive the public for financial and political gain.
Deep fakes are not new. From written quotes that are manipulated and taken out of context to audio quotes that are spliced together to mean something other than originally intended, misrepresentation has been around for centuries. What is new is the technology that allows this sort of seamless and sophisticated deception to be brought to the world of video.
"At one point, video content was considered more reliable, and had a higher threshold of trust," said Alethea CEO and co-founder, Arif Khan. "We think video is harder to fake and we aren't yet as sensitive to detecting those fakes. But the technology is definitely there."
"In the future, each of us will only trust about 15 people and that's it," said Phil Lelyveld, who serves as Immersive Media Program Lead at the Entertainment Technology Center at the University of Southern California. "It's already very difficult to tell true footage from fake. In the future, I expect this will only become more difficult."
How do we know what's true in a world where original videos created with avatars of celebrities and politicians can be manipulated to say virtually anything?
As the U.S. 2020 Presidential Election nears, the potential moral and ethical implications of this technology are startling. A number of cases of truth tampering have recently been widely publicized. On August 5, President Donald Trump's campaign released an ad featuring several photos of Joe Biden that were altered to make it seem like was hiding all alone in his basement. In one photo, at least ten people who had been sitting with Biden in the original shot were cut out. In other photos, Biden's image was removed from a nature preserve and praying in church to make it appear Biden was in that same basement. Recently several videos of Speaker of the House Nancy Pelosi were slowed down by 75 percent to make her sound as if her speech was slurred.
During a campaign event in Florida on September 15 of this year, former Vice President Joe Biden was introduced by Puerto Rican singer-songwriter Luis Fonsi. After he was introduced, Biden paid tribute to the singer-songwriter—he held up his cell phone and played the hit song "Despecito". Shortly afterward, a doctored version of this video appeared on self-described parody site the United Spot replacing the Despicito with N.W.A.'s "F—- Tha Police". By September 16, Donald Trump retweeted the video, twice—first with the line "What is this all about" and second with the line "China is drooling. They can't believe this!" Twitter was quick to mark the video in these tweets as manipulated media.
Twitter had previously addressed several of Donald Trump's tweets—flagging a video shared in June as manipulated media and removing altogether a video shared by Trump in July showing a group promoting the hydroxychloroquine as an effective cure for COVID-19. Many of these manipulated videos are ultimately flagged or taken down, but not before they are seen and shared by millions of online viewers.
These faked videos were exposed rather quickly, as they could be compared with the original, publicly available source material. But what happens when there is no original source material? How do we know what's true in a world where original videos created with avatars of celebrities and politicians can be manipulated to say virtually anything?
"This type of fake media is a profound threat to our democracy," said Reid Blackman, the CEO of VIRTUE--an ethics consultancy for AI leaders. "Democracy depends on well-informed citizens. When citizens can't or won't discern between real and fake news, the implications are huge."
In light of the importance of reliable information in the political system, there's a clear and present need to verify that the images and news we consume is authentic. So how can anyone ever know that the content they are viewing is real?
"This will not be a simple technological solution," said Blackman. "There is no 'truth' button to push to verify authenticity. There's plenty of blame and condemnation to go around. Purveyors of information have a responsibility to vet the reliability of their sources. And consumers also have a responsibility to vet their sources."
Yet the process of verifying sources has never been more challenging. More and more citizens are choosing to live in a "media bubble"—gathering and sharing news only from and with people who share their political leanings and opinions. At one time, United States broadcasters were bound by the Fairness Doctrine—requiring them to present controversial issues important to the public in a way that the FCC deemed honest, equitable and balanced. The repeal of this doctrine in 1987 paved the way for new forms of cable news channels such as Fox News and MSNBC that appealed to viewers with a particular point of view. The Internet has only exacerbated these tendencies. Social media algorithms are designed to keep people clicking within their comfort zones by presenting members with only the thoughts and opinions they want to hear.
"I sometimes laugh when I hear people tell me they can back a particular opinion they hold with research," said Blackman. "Having conducted a fair bit of true scientific research, I am aware that clicking on one article on the Internet hardly qualifies. But a surprising number of people believe that finding any source online that states the fact they choose to believe is the same as proving it true."
Back to the fundamental challenge: How do we as a society root out what's false online? Lelyveld suggests that it will begin by verifying things that are known to be true rather than trying to call out everything that is fake. "The EU called me in to talk about how to deal with fake news coming out of Russia," said Lelyveld. "I told them Hollywood has spent 100 years developing special effects technology to make things that are wholly fictional indistinguishable from the truth. I told them that you'll never chase down every source of fake news. You're better off focusing on what can be proved true."
Arif Khan agrees. "There are probably 100 accounts attributed to Elon Musk on Twitter, but only one has the blue checkmark," said Khan. "That means Twitter has verified that an account of public interest is real. That's what we're trying to do with our platform. Allow celebrities to verify that specific videos were licensed and authorized directly by them."
Alethea will use another key technology called blockchain to mark all authentic authorized videos with celebrity avatars. Blockchain uses a distributed ledger technology to make sure that no undetected changes have been made to the content. Think of the difference between editing a document in a traditional word processing program and editing in a distributed online editing system like Google Docs. In a traditional word processing program, you can edit and copy a document without revealing any changes. In a shared editing system like Google Docs, every person who shares the document can see a record of every edit, addition and copy made of any portion of the document. In a similar way, blockchain helps Alethea ensure that approved videos have not been copied or altered inappropriately.
While AI companies like Alethea are moving to ensure that avatars based on real individuals aren't wrongly identified, the situation becomes a bit murkier when it comes to the question of representing groups, races, creeds, and other forms of identity. Alethea is rightly proud that the completely artificial avatars visually represent a variety of ages, races and sexes. However, companies could conceivably license an avatar to represent a marginalized group without actually hiring a person within that group to decide what the avatar will do or say.
"I don't know if I would call this tokenism, as that is difficult to identify without understanding the hiring company's intent," said Blackman. "Where this becomes deeply troubling is when avatars are used to represent a marginalized group without clearly pointing out the actor is an avatar. It's one thing for an African American woman avatar to say, 'I like ice cream.' It's entirely different thing for an African American woman avatar to say she supports a particular political candidate. In the second case, the avatar is being used as social proof that real people of a certain type back a certain political idea. And there the deception is far more problematic."
"It always comes down to unintended consequences of technology," said Lelyveld. "Technology is neutral—it's only the implementation that has the power to be good or bad. Without a thoughtful approach to the cultural, moral and political implications of technology, it often drifts towards the bad. We need to make a conscious decision as we release new technology to ensure it moves towards the good."
When presented with the idea that his avatars might be used to misrepresent marginalized groups, Khan was thoughtful. "Yes, I can see that is an unintended consequence of our technology. We would like to encourage people to license the avatars of real people, who would have final approval over what their avatars say or do. As to what people do with our completely artificial avatars, we will have to consider that moving forward."
Lelyveld frankly sees the ability for advertisers to create avatars that are our assistants or even our friends as a greater moral concern. "Once our digital assistant or avatar becomes an integral part of our life—even a friend as it were, what's to stop marketers from having those digital friends make suggestions about what drink we buy, which shirt we wear or even which candidate we elect? The possibilities for bad actors to reach us through our digital circle is mind-boggling."
Ultimately, Blackman suggests, we as a society will need to make decisions about what matters to us. "We will need to build policies and write laws—tackling the biggest problems like political deep fakes first. And then we have to figure out how to make the penalties stiff enough to matter. Fining a multibillion-dollar company a few million for a major offense isn't likely to move the needle. The punishment will need to fit the crime."
Until then, media consumers will need to do their own due diligence—to do the difficult work of uncovering the often messy and deeply uncomfortable news that's the truth.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]