The Ethics of Navigating Teen Gender Transitions
At first, Miriam Zachariah's teenage nephew Theo, who was born female, came out as gay. But he "presented as very gender fluid," she says, which suggested that he hadn't made "a clear choice one way or another."
Families, physicians, and psychologists have pondered whether it's better, neutral, or worse to postpone gender transitions until adulthood.
Zachariah decided to ask her nephew, "Do you think you might be trans?" While he answered "no," the question "broke something open for him," she recalls.
A month later, at age 13, he began identifying as trans. And at 14 1/2, he started undergoing gender transition with an endocrine-blocking injection. More recently, at age 16, he added testosterone injections, and soon he won't need the endocrine blocker any longer.
"His voice is deepening, and his muscle mass is growing," says Zachariah, a principal of two elementary schools in Toronto who became her nephew's legal guardian while he was starting to transition.
There are many medical and bioethical aspects associated with the transition to one's self-identified gender, especially when the process involves children and adolescents. Families, physicians, and psychologists have pondered whether it's better, neutral, or worse to postpone the transition until adulthood, while remaining cognizant of the potential consequences to puberty suppression with cross-sex hormones and the irreversibility of transgender surgeries.
Studies have found a higher prevalence of mental health issues among transgender and gender nonconforming youth, particularly if they are unable to express themselves in the self-identified gender. Research also has shown that transgender adults in the process of transitioning initially experienced worse mental health problems than their adolescent counterparts.
The Endocrine Society, a professional medical organization that provides recommendations for clinical practice, stipulates in its guidelines that the diagnosis of gender identity be limited to qualified mental health professionals for those under age 18. This is important because children are still evolving in their thought processes and capacity to articulate themselves, says endocrinologist Joshua Safer, inaugural executive director of the Center for Transgender Medicine and Surgery at the Icahn School of Medicine at Mount Sinai in New York.
A transition can begin safely in gradations, by allowing young children to experiment with haircuts and clothes of either gender before puberty. "If it just ends up being a stage of life, we haven't done anything permanent," says Safer, who is president of the United States Professional Association for Transgender Health as well as steering committee co-chair of TransNet, the international transgender research consortium.
After changes in appearance, the next step would be to try puberty blockers. Also used to halt precocious puberty, the injections are "a reasonably established intervention" for transgender youth, although there are some concerns that the drugs could interfere with bone health in the future, he says.
From a mental health standpoint, "hormones for youth who qualify for them have offered a tremendous boost in well-being and also a reduction in anxiety, depression, and suicidality that often plague transgender youth when they experience their bodies as totally discordant with their self-knowledge of their authentic gender," says psychologist Diane Ehrensaft, director of mental health in the Child and Adolescent Gender Center at Benioff Children's Hospital of the University of California at San Francisco.
Many of these youth have either known about or have been living in their authentic gender since early childhood; others discovered their true identities in adolescence, often with the onset of puberty, says Ehrensaft, associate professor of pediatrics. The effects of gender-affirming hormone treatments are at least partially reversible, she adds, whereas surgical procedures are irreversible. Regardless of reversibility, best practices include careful consideration of all interventions to ensure they are in a youth's best interests in promoting gender health and general well-being.
When a child exhibits signs of gender dysphoria, parents and guardians should at a minimum take these feelings seriously.
In determining readiness for a transgender operation, an assessment of maturity is as important as chronological age, says Loren Schechter, plastic surgeon and director of the Center for Gender Confirmation Surgery at Weiss Memorial Hospital in Chicago. With the consent of a parent or guardian, he commonly performs mastectomies on adolescents at age 17 and sometimes earlier, based on the clinical circumstances and along with a multidisciplinary team that includes a primary care provider and a mental health professional.
"Typically, before surgery, people have had the opportunity and time to consider their options," Schechter says, observing that "the incidence of regret or changing one's mind is extremely low." Others may opt to transition socially but not surgically. "We recognize that gender is not binary," he explains. Some individuals may not "discreetly fit into male or female" in how they perceive themselves.
When a child exhibits signs of gender dysphoria, parents and guardians should at a minimum take these feelings seriously, not dismiss them. They may want to enlist the assistance of a gender identity clinic to address the social environment and guide the child in exploring activities with the self-identified gender, says Kelly McBride Folkers, research associate in the Division of Medical Ethics at New York University School of Medicine.
At one end of the spectrum, some parents and guardians are overzealous in supporting their child's gender-identity pursuits while the youngster is still in an early phase of decision-making. On the flipside, other parents and guardians are not at all supportive, leaving the child at risk for long-term psychological effects, says Folkers, who is also associate director of the High School Bioethics Project at NYU, an educational program that aids teachers and students in examining ethical and conceptual concepts across various areas, one of which is gender.
"It's important to help children navigate through this process early, so that they have all of the social and familial support they need if and when they choose to seek medical options for gender affirmation later," she says.
There are various reasons why children and adolescents want to explore the opposite gender when they reach puberty. "It's a small percentage who will persist and insist and be consistent with that opposite gender identity," says Nicole Mihalopoulos, adolescent medicine physician and associate professor of pediatrics at the University of Utah School of Medicine in Salt Lake City.
Turning to a social work support system can help bring clarity for teens, parents, and guardians.
For those youth, it's appropriate to start the conversation about a medication to block puberty, but without actually promoting a hormonal transition to the opposite gender, in order for the child to further explore living as the opposite gender. "Children need to start at puberty because we need to know that their bodies are physiologically normal," Mihalopoulos says.
A lack of breast development in girls or a lack of testicular development in boys could point to an abnormality in the hypothalamus, pituitary gland, or ovaries/testicles. "That needs to be identified and corrected first," she explains, "before I would say, 'Let's start on the medical transition path of the alternate gender.' "
For parents and guardians, says Theo Zachariah's aunt Miriam, it's very tempting to misinterpret a child's struggling attempts to articulate being trans as an adolescent identity crisis. That's when turning to a social work support system can bring clarity. A youth mental health agency with experience in trans issues made a positive impact on Theo's family through one-on-one counseling and in groups for teens and parents.
"The dialogue they were able to engage in with my nephew, his mom and us," she says, was very instrumental "in helping us all figure out what to do and how to navigate the change."
A new injection is helping stave off RSV this season
In November 2021, Mickayla Wininger’s then one-month-old son, Malcolm, endured a terrifying bout with RSV, the respiratory syncytial (sin-SISH-uhl) virus—a common ailment that affects all age groups. Most people recover from mild, cold-like symptoms in a week or two, but RSV can be life-threatening in others, particularly infants.
Wininger, who lives in southern Illinois, was dressing Malcolm for bed when she noticed what seemed to be a minor irregularity with this breathing. She and her fiancé, Gavin McCullough, planned to take him to the hospital the next day. The matter became urgent when, in the morning, the boy’s breathing appeared to have stopped.
After they dialed 911, Malcolm started breathing again, but he ended up being hospitalized three times for RSV and defects in his heart. Eventually, he recovered fully from RSV, but “it was our worst nightmare coming to life,” Wininger recalled.
It’s a scenario that the federal government is taking steps to prevent. In July, the Food and Drug Administration approved a single-dose, long-acting injection to protect babies and toddlers. The injection, called Beyfortus, or nirsevimab, became available this October. It reduces the incidence of RSV in pre-term babies and other infants for their first RSV season. Children at highest risk for severe RSV are those who were born prematurely and have either chronic lung disease of prematurity or congenital heart disease. In those cases, RSV can progress to lower respiratory tract diseases such as pneumonia and bronchiolitis, or swelling of the lung’s small airway passages.
Each year, RSV is responsible for 2.1 million outpatient visits among children younger than five-years-old, 58,000 to 80,000 hospitalizations in this age group, and between 100 and 300 deaths, according to the Centers for Disease Control and Prevention. Transmitted through close contact with an infected person, the virus circulates on a seasonal basis in most regions of the country, typically emerging in the fall and peaking in the winter.
In August, however, the CDC issued a health advisory on a late-summer surge in severe cases of RSV among young children in Florida and Georgia. The agency predicts "increased RSV activity spreading north and west over the following two to three months.”
Infants are generally more susceptible to RSV than older people because their airways are very small, and their mechanisms to clear these passages are underdeveloped. RSV also causes mucus production and inflammation, which is more of a problem when the airway is smaller, said Jennifer Duchon, an associate professor of newborn medicine and pediatrics in the Icahn School of Medicine at Mount Sinai in New York.
In 2021 and 2022, RSV cases spiked, sending many to emergency departments. “RSV can cause serious disease in infants and some children and results in a large number of emergency department and physician office visits each year,” John Farley, director of the Office of Infectious Diseases in the FDA’s Center for Drug Evaluation and Research, said in a news release announcing the approval of the RSV drug. The decision “addresses the great need for products to help reduce the impact of RSV disease on children, families and the health care system.”
Sean O’Leary, chair of the committee on infectious diseases for the American Academy of Pediatrics, says that “we’ve never had a product like this for routine use in children, so this is very exciting news.” It is recommended for all kids under eight months old for their first RSV season. “I would encourage nirsevimab for all eligible children when it becomes available,” O’Leary said.
For those children at elevated risk of severe RSV and between the ages of 8 and 19 months, the CDC recommends one dose in their second RSV season.
The drug will be “really helpful to keep babies healthy and out of the hospital,” said O’Leary, a professor of pediatrics at the University of Colorado Anschutz Medical Campus/Children’s Hospital Colorado in Denver.
An antiviral drug called Synagis (palivizumab) has been an option to prevent serious RSV illness in high-risk infants since it was approved by the FDA in 1998. The injection must be given monthly during RSV season. However, its use is limited to “certain children considered at high risk for complications, does not help cure or treat children already suffering from serious RSV disease, and cannot prevent RSV infection,” according to the National Foundation for Infectious Diseases.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants.
Both nirsevimab and palivizumab are monoclonal antibodies that act against RSV. Monoclonal antibodies are lab-made proteins that mimic the immune system’s ability to fight off harmful pathogens such as viruses. A single intramuscular injection of nirsevimab preceding or during RSV season may provide protection.
The strategy with the new monoclonal antibody is “to extend protection to healthy infants who nonetheless are at risk because of their age, as well as infants with additional medical risk factors,” said Philippa Gordon, a pediatrician and infectious disease specialist in Brooklyn, New York, and medical adviser to Park Slope Parents, an online community support group.
No specific preventive measure is needed for older and healthier kids because they will develop active immunity, which is more durable. Meanwhile, older adults, who are also vulnerable to RSV, can receive one of two new vaccines. So can pregnant women, who pass on immunity to the fetus, Gordon said.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants, “nor is there any treatment other than giving oxygen or supportive care,” said Stanley Spinner, chief medical officer and vice president of Texas Children’s Pediatrics and Texas Children’s Urgent Care.
As with any virus, washing hands frequently and keeping infants and children away from sick people are the best defenses, Duchon said. This approach isn’t foolproof because viruses can run rampant in daycare centers, schools and parents’ workplaces, she added.
Mickayla Wininger, Malcolm’s mother, insists that family and friends wear masks, wash their hands and use hand sanitizer when they’re around her daughter and two sons. She doesn’t allow them to kiss or touch the children. Some people take it personally, but she would rather be safe than sorry.
Wininger recalls the severe anxiety caused by Malcolm's ordeal with RSV. After returning with her infant from his hospital stays, she was terrified to go to sleep. “My fiancé and I would trade shifts, so that someone was watching over our son 24 hours a day,” she said. “I was doing a night shift, so I would take caffeine pills to try and keep myself awake and would end up crashing early hours in the morning and wake up frantically thinking something happened to my son.”
Two years later, her anxiety has become more manageable, and Malcolm is doing well. “He is thriving now,” Wininger said. He recently had his second birthday and "is just the spunkiest boy you will ever meet. He looked death straight in the eyes and fought to be here today.”
Story by Big Think
For most of history, artificial intelligence (AI) has been relegated almost entirely to the realm of science fiction. Then, in late 2022, it burst into reality — seemingly out of nowhere — with the popular launch of ChatGPT, the generative AI chatbot that solves tricky problems, designs rockets, has deep conversations with users, and even aces the Bar exam.
But the truth is that before ChatGPT nabbed the public’s attention, AI was already here, and it was doing more important things than writing essays for lazy college students. Case in point: It was key to saving the lives of tens of millions of people.
AI-designed mRNA vaccines
As Dave Johnson, chief data and AI officer at Moderna, told MIT Technology Review‘s In Machines We Trust podcast in 2022, AI was integral to creating the company’s highly effective mRNA vaccine against COVID. Moderna and Pfizer/BioNTech’s mRNA vaccines collectively saved between 15 and 20 million lives, according to one estimate from 2022.
Johnson described how AI was hard at work at Moderna, well before COVID arose to infect billions. The pharmaceutical company focuses on finding mRNA therapies to fight off infectious disease, treat cancer, or thwart genetic illness, among other medical applications. Messenger RNA molecules are essentially molecular instructions for cells that tell them how to create specific proteins, which do everything from fighting infection, to catalyzing reactions, to relaying cellular messages.
Johnson and his team put AI and automated robots to work making lots of different mRNAs for scientists to experiment with. Moderna quickly went from making about 30 per month to more than one thousand. They then created AI algorithms to optimize mRNA to maximize protein production in the body — more bang for the biological buck.
For Johnson and his team’s next trick, they used AI to automate science, itself. Once Moderna’s scientists have an mRNA to experiment with, they do pre-clinical tests in the lab. They then pore over reams of data to see which mRNAs could progress to the next stage: animal trials. This process is long, repetitive, and soul-sucking — ill-suited to a creative scientist but great for a mindless AI algorithm. With scientists’ input, models were made to automate this tedious process.
“We don’t think about AI in the context of replacing humans,” says Dave Johnson, chief data and AI officer at Moderna. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
All these AI systems were in put in place over the past decade. Then COVID showed up. So when the genome sequence of the coronavirus was made public in January 2020, Moderna was off to the races pumping out and testing mRNAs that would tell cells how to manufacture the coronavirus’s spike protein so that the body’s immune system would recognize and destroy it. Within 42 days, the company had an mRNA vaccine ready to be tested in humans. It eventually went into hundreds of millions of arms.
Biotech harnesses the power of AI
Moderna is now turning its attention to other ailments that could be solved with mRNA, and the company is continuing to lean on AI. Scientists are still coming to Johnson with automation requests, which he happily obliges.
“We don’t think about AI in the context of replacing humans,” he told the Me, Myself, and AI podcast. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
Moderna, which was founded as a “digital biotech,” is undoubtedly the poster child of AI use in mRNA vaccines. Moderna recently signed a deal with IBM to use the company’s quantum computers as well as its proprietary generative AI, MoLFormer.
Moderna’s success is encouraging other companies to follow its example. In January, BioNTech, which partnered with Pfizer to make the other highly effective mRNA vaccine against COVID, acquired the company InstaDeep for $440 million to implement its machine learning AI across its mRNA medicine platform. And in May, Chinese technology giant Baidu announced an AI tool that designs super-optimized mRNA sequences in minutes. A nearly countless number of mRNA molecules can code for the same protein, but some are more stable and result in the production of more proteins. Baidu’s AI, called “LinearDesign,” finds these mRNAs. The company licensed the tool to French pharmaceutical company Sanofi.
Writing in the journal Accounts of Chemical Research in late 2021, Sebastian M. Castillo-Hair and Georg Seelig, computer engineers who focus on synthetic biology at the University of Washington, forecast that AI machine learning models will further accelerate the biotechnology research process, putting mRNA medicine into overdrive to the benefit of all.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.