The Ethics of Navigating Teen Gender Transitions
At first, Miriam Zachariah's teenage nephew Theo, who was born female, came out as gay. But he "presented as very gender fluid," she says, which suggested that he hadn't made "a clear choice one way or another."
Families, physicians, and psychologists have pondered whether it's better, neutral, or worse to postpone gender transitions until adulthood.
Zachariah decided to ask her nephew, "Do you think you might be trans?" While he answered "no," the question "broke something open for him," she recalls.
A month later, at age 13, he began identifying as trans. And at 14 1/2, he started undergoing gender transition with an endocrine-blocking injection. More recently, at age 16, he added testosterone injections, and soon he won't need the endocrine blocker any longer.
"His voice is deepening, and his muscle mass is growing," says Zachariah, a principal of two elementary schools in Toronto who became her nephew's legal guardian while he was starting to transition.
There are many medical and bioethical aspects associated with the transition to one's self-identified gender, especially when the process involves children and adolescents. Families, physicians, and psychologists have pondered whether it's better, neutral, or worse to postpone the transition until adulthood, while remaining cognizant of the potential consequences to puberty suppression with cross-sex hormones and the irreversibility of transgender surgeries.
Studies have found a higher prevalence of mental health issues among transgender and gender nonconforming youth, particularly if they are unable to express themselves in the self-identified gender. Research also has shown that transgender adults in the process of transitioning initially experienced worse mental health problems than their adolescent counterparts.
The Endocrine Society, a professional medical organization that provides recommendations for clinical practice, stipulates in its guidelines that the diagnosis of gender identity be limited to qualified mental health professionals for those under age 18. This is important because children are still evolving in their thought processes and capacity to articulate themselves, says endocrinologist Joshua Safer, inaugural executive director of the Center for Transgender Medicine and Surgery at the Icahn School of Medicine at Mount Sinai in New York.
A transition can begin safely in gradations, by allowing young children to experiment with haircuts and clothes of either gender before puberty. "If it just ends up being a stage of life, we haven't done anything permanent," says Safer, who is president of the United States Professional Association for Transgender Health as well as steering committee co-chair of TransNet, the international transgender research consortium.
After changes in appearance, the next step would be to try puberty blockers. Also used to halt precocious puberty, the injections are "a reasonably established intervention" for transgender youth, although there are some concerns that the drugs could interfere with bone health in the future, he says.
From a mental health standpoint, "hormones for youth who qualify for them have offered a tremendous boost in well-being and also a reduction in anxiety, depression, and suicidality that often plague transgender youth when they experience their bodies as totally discordant with their self-knowledge of their authentic gender," says psychologist Diane Ehrensaft, director of mental health in the Child and Adolescent Gender Center at Benioff Children's Hospital of the University of California at San Francisco.
Many of these youth have either known about or have been living in their authentic gender since early childhood; others discovered their true identities in adolescence, often with the onset of puberty, says Ehrensaft, associate professor of pediatrics. The effects of gender-affirming hormone treatments are at least partially reversible, she adds, whereas surgical procedures are irreversible. Regardless of reversibility, best practices include careful consideration of all interventions to ensure they are in a youth's best interests in promoting gender health and general well-being.
When a child exhibits signs of gender dysphoria, parents and guardians should at a minimum take these feelings seriously.
In determining readiness for a transgender operation, an assessment of maturity is as important as chronological age, says Loren Schechter, plastic surgeon and director of the Center for Gender Confirmation Surgery at Weiss Memorial Hospital in Chicago. With the consent of a parent or guardian, he commonly performs mastectomies on adolescents at age 17 and sometimes earlier, based on the clinical circumstances and along with a multidisciplinary team that includes a primary care provider and a mental health professional.
"Typically, before surgery, people have had the opportunity and time to consider their options," Schechter says, observing that "the incidence of regret or changing one's mind is extremely low." Others may opt to transition socially but not surgically. "We recognize that gender is not binary," he explains. Some individuals may not "discreetly fit into male or female" in how they perceive themselves.
When a child exhibits signs of gender dysphoria, parents and guardians should at a minimum take these feelings seriously, not dismiss them. They may want to enlist the assistance of a gender identity clinic to address the social environment and guide the child in exploring activities with the self-identified gender, says Kelly McBride Folkers, research associate in the Division of Medical Ethics at New York University School of Medicine.
At one end of the spectrum, some parents and guardians are overzealous in supporting their child's gender-identity pursuits while the youngster is still in an early phase of decision-making. On the flipside, other parents and guardians are not at all supportive, leaving the child at risk for long-term psychological effects, says Folkers, who is also associate director of the High School Bioethics Project at NYU, an educational program that aids teachers and students in examining ethical and conceptual concepts across various areas, one of which is gender.
"It's important to help children navigate through this process early, so that they have all of the social and familial support they need if and when they choose to seek medical options for gender affirmation later," she says.
There are various reasons why children and adolescents want to explore the opposite gender when they reach puberty. "It's a small percentage who will persist and insist and be consistent with that opposite gender identity," says Nicole Mihalopoulos, adolescent medicine physician and associate professor of pediatrics at the University of Utah School of Medicine in Salt Lake City.
Turning to a social work support system can help bring clarity for teens, parents, and guardians.
For those youth, it's appropriate to start the conversation about a medication to block puberty, but without actually promoting a hormonal transition to the opposite gender, in order for the child to further explore living as the opposite gender. "Children need to start at puberty because we need to know that their bodies are physiologically normal," Mihalopoulos says.
A lack of breast development in girls or a lack of testicular development in boys could point to an abnormality in the hypothalamus, pituitary gland, or ovaries/testicles. "That needs to be identified and corrected first," she explains, "before I would say, 'Let's start on the medical transition path of the alternate gender.' "
For parents and guardians, says Theo Zachariah's aunt Miriam, it's very tempting to misinterpret a child's struggling attempts to articulate being trans as an adolescent identity crisis. That's when turning to a social work support system can bring clarity. A youth mental health agency with experience in trans issues made a positive impact on Theo's family through one-on-one counseling and in groups for teens and parents.
"The dialogue they were able to engage in with my nephew, his mom and us," she says, was very instrumental "in helping us all figure out what to do and how to navigate the change."
Scientists experiment with burning iron as a fuel source
Story by Freethink
Try burning an iron metal ingot and you’ll have to wait a long time — but grind it into a powder and it will readily burst into flames. That’s how sparklers work: metal dust burning in a beautiful display of light and heat. But could we burn iron for more than fun? Could this simple material become a cheap, clean, carbon-free fuel?
In new experiments — conducted on rockets, in microgravity — Canadian and Dutch researchers are looking at ways of boosting the efficiency of burning iron, with a view to turning this abundant material — the fourth most common in the Earth’s crust, about about 5% of its mass — into an alternative energy source.
Iron as a fuel
Iron is abundantly available and cheap. More importantly, the byproduct of burning iron is rust (iron oxide), a solid material that is easy to collect and recycle. Neither burning iron nor converting its oxide back produces any carbon in the process.
Iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again.
Iron has a high energy density: it requires almost the same volume as gasoline to produce the same amount of energy. However, iron has poor specific energy: it’s a lot heavier than gas to produce the same amount of energy. (Think of picking up a jug of gasoline, and then imagine trying to pick up a similar sized chunk of iron.) Therefore, its weight is prohibitive for many applications. Burning iron to run a car isn’t very practical if the iron fuel weighs as much as the car itself.
In its powdered form, however, iron offers more promise as a high-density energy carrier or storage system. Iron-burning furnaces could provide direct heat for industry, home heating, or to generate electricity.
Plus, iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again (as long as you’ve got a source of clean electricity or green hydrogen). When there’s excess electricity available from renewables like solar and wind, for example, rust could be converted back into iron powder, and then burned on demand to release that energy again.
However, these methods of recycling rust are very energy intensive and inefficient, currently, so improvements to the efficiency of burning iron itself may be crucial to making such a circular system viable.
The science of discrete burning
Powdered particles have a high surface area to volume ratio, which means it is easier to ignite them. This is true for metals as well.
Under the right circumstances, powdered iron can burn in a manner known as discrete burning. In its most ideal form, the flame completely consumes one particle before the heat radiating from it combusts other particles in its vicinity. By studying this process, researchers can better understand and model how iron combusts, allowing them to design better iron-burning furnaces.
Discrete burning is difficult to achieve on Earth. Perfect discrete burning requires a specific particle density and oxygen concentration. When the particles are too close and compacted, the fire jumps to neighboring particles before fully consuming a particle, resulting in a more chaotic and less controlled burn.
Presently, the rate at which powdered iron particles burn or how they release heat in different conditions is poorly understood. This hinders the development of technologies to efficiently utilize iron as a large-scale fuel.
Burning metal in microgravity
In April, the European Space Agency (ESA) launched a suborbital “sounding” rocket, carrying three experimental setups. As the rocket traced its parabolic trajectory through the atmosphere, the experiments got a few minutes in free fall, simulating microgravity.
One of the experiments on this mission studied how iron powder burns in the absence of gravity.
In microgravity, particles float in a more uniformly distributed cloud. This allows researchers to model the flow of iron particles and how a flame propagates through a cloud of iron particles in different oxygen concentrations.
Existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
Insights into how flames propagate through iron powder under different conditions could help design much more efficient iron-burning furnaces.
Clean and carbon-free energy on Earth
Various businesses are looking at ways to incorporate iron fuels into their processes. In particular, it could serve as a cleaner way to supply industrial heat by burning iron to heat water.
For example, Dutch brewery Swinkels Family Brewers, in collaboration with the Eindhoven University of Technology, switched to iron fuel as the heat source to power its brewing process, accounting for 15 million glasses of beer annually. Dutch startup RIFT is running proof-of-concept iron fuel power plants in Helmond and Arnhem.
As researchers continue to improve the efficiency of burning iron, its applicability will extend to other use cases as well. But is the infrastructure in place for this transition?
Often, the transition to new energy sources is slowed by the need to create new infrastructure to utilize them. Fortunately, this isn’t the case with switching from fossil fuels to iron. Since the ideal temperature to burn iron is similar to that for hydrocarbons, existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.
How to Use Thoughts to Control Computers with Dr. Tom Oxley
Tom Oxley is building what he calls a “natural highway into the brain” that lets people use their minds to control their phones and computers. The device, called the Stentrode, could improve the lives of hundreds of thousands of people living with spinal cord paralysis, ALS and other neurodegenerative diseases.
Leaps.org talked with Dr. Oxley for today’s podcast. A fascinating thing about the Stentrode is that it works very differently from other “brain computer interfaces” you may be familiar with, like Elon Musk’s Neuralink. Some BCIs are implanted by surgeons directly into a person’s brain, but the Stentrode is much less invasive. Dr. Oxley’s company, Synchron, opts for a “natural” approach, using stents in blood vessels to access the brain. This offers some major advantages to the handful of people who’ve already started to use the Stentrode.
The audio improves about 10 minutes into the episode. (There was a minor headset issue early on, but everything is audible throughout.) Dr. Oxley’s work creates game-changing opportunities for patients desperate for new options. His take on where we're headed with BCIs is must listening for anyone who cares about the future of health and technology.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
In our conversation, Dr. Oxley talks about “Bluetooth brain”; the critical role of AI in the present and future of BCIs; how BCIs compare to voice command technology; regulatory frameworks for revolutionary technologies; specific people with paralysis who’ve been able to regain some independence thanks to the Stentrode; what it means to be a neurointerventionist; how to scale BCIs for more people to use them; the risks of BCIs malfunctioning; organic implants; and how BCIs help us understand the brain, among other topics.
Dr. Oxley received his PhD in neuro engineering from the University of Melbourne in Australia. He is the founding CEO of Synchron and an associate professor and the head of the vascular bionics laboratory at the University of Melbourne. He’s also a clinical instructor in the Deepartment of Neurosurgery at Mount Sinai Hospital. Dr. Oxley has completed more than 1,600 endovascular neurosurgical procedures on patients, including people with aneurysms and strokes, and has authored over 100 peer reviewed articles.
Links:
Synchron website - https://synchron.com/
Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients (paper co-authored by Tom Oxley) - https://jamanetwork.com/journals/jamaneurology/art...
More research related to Synchron's work - https://synchron.com/research
Tom Oxley on LinkedIn - https://www.linkedin.com/in/tomoxl
Tom Oxley on Twitter - https://twitter.com/tomoxl?lang=en
Tom Oxley TED - https://www.ted.com/talks/tom_oxley_a_brain_implant_that_turns_your_thoughts_into_text?language=en
Tom Oxley website - https://tomoxl.com/
Novel brain implant helps paralyzed woman speak using digital avatar - https://engineering.berkeley.edu/news/2023/08/novel-brain-implant-helps-paralyzed-woman-speak-using-a-digital-avatar/
Edward Chang lab - https://changlab.ucsf.edu/
BCIs convert brain activity into text at 62 words per minute - https://med.stanford.edu/neurosurgery/news/2023/he...
Leaps.org: The Mind-Blowing Promise of Neural Implants - https://leaps.org/the-mind-blowing-promise-of-neural-implants/
Tom Oxley