The Surprising Connection Between Healthy Human Embryos and Treatment-Resistant Cancer

A retrovirus illustration.
Even with groundbreaking advances in cancer treatment and research over the past two centuries, the problem remains that some cancer does not respond to treatment. A subset of patients experience recurrence or metastasis, even when the original tumor is detected at an early stage.
"Why do some tumors evolve into metastatic disease that is then capable of spreading, while other tumors do not?"
Moreover, doctors are not able to tell in advance which patients will respond to treatment and which will not. This means that many patients endure conventional cancer therapies, like countless rounds of chemo and radiation, that do not ultimately increase their likelihood of survival.
Researchers are beginning to understand why some tumors respond to treatment and others do not. The answer appears to lie in the strange connection between human life at its earliest stages — and retroviruses. A retrovirus is different than a regular virus in that its RNA is reverse-transcribed into DNA, which makes it possible for its genetic material to be integrated into a host's genome, and passed on to subsequent generations.
Researchers have shown that reactivation of retroviral sequences is associated with the survival of developing embryos. Certain retroviral sequences must be expressed around the 8-cell stage for successful embryonic development. Active expression of retroviral sequences is required for proper functioning of human embryonic stem cells. These sequences must then shut down at the later state, or the embryo will fail to develop. And here's where things get really interesting: If specific stem cell-associated retroviral sequences become activated again later in life, they seem to play a role in some cancers becoming lethal.
"Eight to 10 million years ago, at the time when we became primates, the population was infected with a virus."
While some retroviral sequences in our genome contribute to the restriction of viral infection and appear to have contributed to the development of the placenta, they can also, if expressed at the wrong time, drive the development of cancer stem cells. Described as the "beating hearts" of treatment-resistant tumors, cancer stem cells are robust and long-living, and they can maintain the ability to proliferate indefinitely.
This apparent connection has inspired Gennadi V. Glinsky, a research scientist at the Institute of Engineering in Medicine at UC San Diego, to find better ways to diagnose and treat metastatic cancer. Glinsky specializes in the development of new technologies, methods, and system integration approaches for personalized genomics-guided prevention and precision therapy of cancer and other common human disorders. We spoke with him about his work and the exciting possibilities it may open up for cancer patients. This interview has been edited and condensed for clarity.
What key questions have driven your research in this area?
I was thinking for years that the major mysteries are: Why do some tumors evolve into metastatic disease that is then capable of spreading, while other tumors do not? What explains some cancer cells' ability to get into the blood or lymph nodes and be able to survive in this very foreign, hostile environment of circulatory channels, and then be able to escape and take root elsewhere in the body?
"If you detect conventional cancer early, and treat it early, it will be cured. But with cancer involving stem cells, even if you diagnose it early, it will come back."
When we were able to do genomic analysis on enough early stage cancers, we arrived at an alternative concept of cancer that starts in the stem cells. Stem cells exist throughout our bodies, so in the case of cancer starting in stem cells you will have metastatic properties … because that's what stem cells do. They can travel throughout the body, they can make any other type of cell or resemble them.
So there are basically two types of cancer: conventional non-stem cell cancer and stem cell-like cancer. If you detect conventional cancer early, and treat it early, it will be cured. But with cancer involving stem cells, even if you diagnose it early, it will come back.
What causes some cancer to originate in stem cells?
Cancer stem cells possess stemness [or the ability to self-renew, differentiate, and survive chemical and physical insults]. Stemness is driven by the reactivation of retroviral sequences that have been integrated into the human genome.
Tell me about these retroviral sequences.
Eight to 10 million years ago, at the time when we became primates, the population was infected with a virus. Part of the population survived and the virus was integrated into our primate ancestors' genome. These are known as human endogenous retroviruses, or HERVs. The DNA of the host cells became carriers of these retroviral sequences, and whenever the host cells multiply, they carry the sequences in them and pass them on to future generations.
This pattern of infection and integration of retroviral sequences has happened thousands of times during our evolutionary history. As a result, eight percent of the human genome is derived from these different retroviral sequences.
We've found that some HERVs are expressed in some cancers. For example, 10-15 percent of prostate cancer is stem cell-like. But at first it was not understood what this HERV expression meant.
Gennadi V. Glinsky, a research scientist at the Institute of Engineering in Medicine at UC San Diego.
(Courtesy)
How have you endeavored to solve this in your lab?
We were trying to track down metastatic prostate cancer. We found a molecular signature of prostate cancer that made the prostate tumors look like stem cells. And those were the ones likely to fail cancer therapy. Then we applied this signature to other types of cancers and we found that uniformly, tumors that exhibit stemness fail therapy.
Then in 2014, several breakthrough papers came out that linked the activation of the retroviral sequences in human embryonic stem cells and in human embryo development. When I read these papers, it occurred to me that if these retroviral sequences are required for pluripotency in human embryonic stem cells, they must be involved in stem cell-resembling human cancer that's likely to fail therapy.
What was one of the biggest aha moments in your cancer research?
Several major labs around the U.S. took advantage of The Cancer Genome Anatomy Project, which made it possible to have access to about 12,000 individual human tumors across a spectrum of 30 or so cancer types. This is the largest set of tumors that's ever been made available in a comprehensive and state of the art way. So we now know all there is to know about the genetics of these tumors, including the long-term clinical outcome.
"When we cross-referenced these 10,713 human cancer survival genes to see how many are part of the retroviral network in human cells, we found that the answer was 97 percent!"
These labs identified 10,713 human genes that were associated with the likelihood of patients surviving or dying after [cancer] treatment. I call them the human cancer survival genes, and there are two classes of them: one whose high expression in tumors correlates with an increased likelihood of survival and one whose high expression in tumors correlates with a decreased likelihood of survival.
When we cross-referenced these 10,713 human cancer survival genes to see how many are part of the retroviral network in human cells, we found that the answer was 97 percent!
How will all of this new knowledge change how cancer is treated?
To make cancer stem cells vulnerable to treatment, you need to interfere with stemness and the stemness network. And to do this, you would need to identify the retroviral component of the network, and interfere with this component therapeutically.
The real breakthrough will come when we start to treat these early stage stem cell-like cancers with stem cell-targeting therapy that we are trying to develop. And with our ability to detect the retroviral genome activation, we will be able to detect stem cell-like cancer very early on.
How far away are we from being able to apply this information clinically?
We have two molecule [treatment] candidates. We know that they efficiently interfere with the stemness program in the cells. The road to clinical trials is typically a long one, but since we're clear about our targets, it's a shorter road. We would like to say it's two to three years until we can start a human trial.
Have You Heard of the Best Sport for Brain Health?
In this week's Friday Five, research points to this brain healthiest of sports. Plus, the natural way to reprogram cells to a younger state, the network that could underlie many different mental illnesses, and a new test could diagnose autism in newborns. Plus, scientists 3D print an ear and attach it to woman
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five:
- Reprogram cells to a younger state
- Pick up this sport for brain health
- Do all mental illnesses have the same underlying cause?
- New test could diagnose autism in newborns
- Scientists 3D print an ear and attach it to woman
Can blockchain help solve the Henrietta Lacks problem?
Marielle Gross, a professor at the University of Pittsburgh, shows patients a new app that tracks how their samples are used during biomedical research.
Science has come a long way since Henrietta Lacks, a Black woman from Baltimore, succumbed to cervical cancer at age 31 in 1951 -- only eight months after her diagnosis. Since then, research involving her cancer cells has advanced scientific understanding of the human papilloma virus, polio vaccines, medications for HIV/AIDS and in vitro fertilization.
Today, the World Health Organization reports that those cells are essential in mounting a COVID-19 response. But they were commercialized without the awareness or permission of Lacks or her family, who have filed a lawsuit against a biotech company for profiting from these “HeLa” cells.
While obtaining an individual's informed consent has become standard procedure before the use of tissues in medical research, many patients still don’t know what happens to their samples. Now, a new phone-based app is aiming to change that.
Tissue donors can track what scientists do with their samples while safeguarding privacy, through a pilot program initiated in October by researchers at the Johns Hopkins Berman Institute of Bioethics and the University of Pittsburgh’s Institute for Precision Medicine. The program uses blockchain technology to offer patients this opportunity through the University of Pittsburgh's Breast Disease Research Repository, while assuring that their identities remain anonymous to investigators.
A blockchain is a digital, tamper-proof ledger of transactions duplicated and distributed across a computer system network. Whenever a transaction occurs with a patient’s sample, multiple stakeholders can track it while the owner’s identity remains encrypted. Special certificates called “nonfungible tokens,” or NFTs, represent patients’ unique samples on a trusted and widely used blockchain that reinforces transparency.
Blockchain could be used to notify people if cancer researchers discover that they have certain risk factors.
“Healthcare is very data rich, but control of that data often does not lie with the patient,” said Julius Bogdan, vice president of analytics for North America at the Healthcare Information and Management Systems Society (HIMSS), a Chicago-based global technology nonprofit. “NFTs allow for the encapsulation of a patient’s data in a digital asset controlled by the patient.” He added that this technology enables a more secure and informed method of participating in clinical and research trials.
Without this technology, de-identification of patients’ samples during biomedical research had the unintended consequence of preventing them from discovering what researchers find -- even if that data could benefit their health. A solution was urgently needed, said Marielle Gross, assistant professor of obstetrics, gynecology and reproductive science and bioethics at the University of Pittsburgh School of Medicine.
“A researcher can learn something from your bio samples or medical records that could be life-saving information for you, and they have no way to let you or your doctor know,” said Gross, who is also an affiliate assistant professor at the Berman Institute. “There’s no good reason for that to stay the way that it is.”
For instance, blockchain could be used to notify people if cancer researchers discover that they have certain risk factors. Gross estimated that less than half of breast cancer patients are tested for mutations in BRCA1 and BRCA2 — tumor suppressor genes that are important in combating cancer. With normal function, these genes help prevent breast, ovarian and other cells from proliferating in an uncontrolled manner. If researchers find mutations, it’s relevant for a patient’s and family’s follow-up care — and that’s a prime example of how this newly designed app could play a life-saving role, she said.
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app -- called de-bi, which is short for decentralized biobank -- before undergoing a mastectomy for early-stage breast cancer in November, after it was diagnosed on a routine mammogram. She often takes part in medical research and looks forward to tracking her tissues.
“Anytime there’s a scientific experiment or study, I’m quick to participate -- to advance my own wellness as well as knowledge in general,” said Burton, 49, a life insurance service representative who lives in Carnegie, Pa. “It’s my way of contributing.”
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app before undergoing a mastectomy for early-stage breast cancer.
Liz Burton
The pilot program raises the issue of what investigators may owe study participants, especially since certain populations, such as Black and indigenous peoples, historically were not treated in an ethical manner for scientific purposes. “It’s a truly laudable effort,” Tamar Schiff, a postdoctoral fellow in medical ethics at New York University’s Grossman School of Medicine, said of the endeavor. “Research participants are beautifully altruistic.”
Lauren Sankary, a bioethicist and associate director of the neuroethics program at Cleveland Clinic, agrees that the pilot program provides increased transparency for study participants regarding how scientists use their tissues while acknowledging individuals’ contributions to research.
However, she added, “it may require researchers to develop a process for ongoing communication to be responsive to additional input from research participants.”
Peter H. Schwartz, professor of medicine and director of Indiana University’s Center for Bioethics in Indianapolis, said the program is promising, but he wonders what will happen if a patient has concerns about a particular research project involving their tissues.
“I can imagine a situation where a patient objects to their sample being used for some disease they’ve never heard about, or which carries some kind of stigma like a mental illness,” Schwartz said, noting that researchers would have to evaluate how to react. “There’s no simple answer to those questions, but the technology has to be assessed with an eye to the problems it could raise.”
To truly make a difference, blockchain must enable broad consent from patients, not just de-identification.
As a result, researchers may need to factor in how much information to share with patients and how to explain it, Schiff said. There are also concerns that in tracking their samples, patients could tell others what they learned before researchers are ready to publicly release this information. However, Bogdan, the vice president of the HIMSS nonprofit, believes only a minimal study identifier would be stored in an NFT, not patient data, research results or any type of proprietary trial information.
Some patients may be confused by blockchain and reluctant to embrace it. “The complexity of NFTs may prevent the average citizen from capitalizing on their potential or vendors willing to participate in the blockchain network,” Bogdan said. “Blockchain technology is also quite costly in terms of computational power and energy consumption, contributing to greenhouse gas emissions and climate change.”
In addition, this nascent, groundbreaking technology is immature and vulnerable to data security flaws, disputes over intellectual property rights and privacy issues, though it does offer baseline protections to maintain confidentiality. To truly make a difference, blockchain must enable broad consent from patients, not just de-identification, said Robyn Shapiro, a bioethicist and founding attorney at Health Sciences Law Group near Milwaukee.
The Henrietta Lacks story is a prime example, Shapiro noted. During her treatment for cervical cancer at Johns Hopkins, Lacks’s tissue was de-identified (albeit not entirely, because her cell line, HeLa, bore her initials). After her death, those cells were replicated and distributed for important and lucrative research and product development purposes without her knowledge or consent.
Nonetheless, Shapiro thinks that the initiative by the University of Pittsburgh and Johns Hopkins has potential to solve some ethical challenges involved in research use of biospecimens. “Compared to the system that allowed Lacks’s cells to be used without her permission, Shapiro said, “blockchain technology using nonfungible tokens that allow patients to follow their samples may enhance transparency, accountability and respect for persons who contribute their tissue and clinical data for research.”
Read more about laws that have prevented people from the rights to their own cells.