The Top Five Mysteries of the Human Gut Microbiome
A scholar of science, circa 2218, might look back on this era and wonder why, all of a sudden, scientists became so obsessed with human stool. Or more accurately, the microorganisms therein.
Although every human is nearly identical genetically, each person carries around a massively different variety of microbial genes from bacteria, fungi, viruses, and archaea.
This scholar might find, for example, the seven-fold increase in PubMed articles on "gut microbiome" in the half-decade between 2012 and 2017; the plastic detritus of millions of fecal sample collection kits, and evidence that freezers in research labs worldwide had filled up with fecal samples. What's happened?
Human genome science has led to some important medical insights over time. Now it's moving over for the microorganisms. Because, although every human is nearly identical genetically, each person carries around a massively different variety of microbial genes from bacteria, fungi, viruses, and archaea—genes that are collectively called the microbiome.
Thinking that more knowledge about the gut microbiome is going to solve every problem in medicine is pure hubris. And yet these microorganisms seem to be at the nexus of humans and our environment, capable of changing us metabolically and adjusting our immune systems. What might they have the power to do?
Here are five of the most important questions that lie ahead for microbiome science.
1) What makes a gut microbiome 'healthy'?
The words "healthy microbiome" should raise a red flag. Because, currently, if scientists examine the gut microbial community of a single individual they have no way of knowing whether or not it qualifies as healthy—nor even what parameter to look at in order to find out. Is it only the names of the bugs that matter, or is it their diversity? Alternatively, is it function—what they're genetically equipped to do?
The words "healthy microbiome" should raise a red flag.
The focused efforts of the Human Microbiome Project were supposed to accomplish the apparently simple task of defining a healthy microbiome, but no clear answers emerged. If researchers could identify the parameters of a healthy microbiota per se, they might have a way to know whether manipulations—from probiotics to fecal transplant—were making a difference that could lead to a good health outcome.
2) Diet can manipulate gut microbes. How does this affect health?
"Many kinds of bacteria in our gut, they're changeable by changing our diet," says Liping Zhao of Shanghai Jiao Tong University in China, citing two large population studies from 2016. What's murkier is how this effects a change in health status.
Zhao's research focuses on making the three-way link between diet, gut microbiota, and health outcome. Meanwhile, researchers like Genelle Healey at the University of British Columbia (UBC) are working to track how the gut microbiome and health respond to a dietary intervention in a personalized way.
Knowing how the diet-induced changes in gut microbes affected health in the long term would allow every individual to toss out the diet books and figure out a dietary pattern—probably as personal as their gut microbes—that would result in their best health down the line.
If scientists could find how to harness one or more microorganisms to have specific effects on the immune system, they might be able to crack a new class of therapeutics.
3) How can gut microorganisms be used to fine-tune the immune system?
Many chronic diseases—autoimmune conditions but also, according to the latest research, obesity and cardiovascular disease—are immune mediated. Kenya Honda of Keio University School of Medicine in Tokyo, Yasmine Belkaid of the US National Institutes of Health (NIH), June Round at University of Utah, and many other researchers are chasing the ways in which gut microbes 'talk' to the immune system. But it's more than just studying certain bugs.
"It's an incredibly complex situation and we can't just label bugs as pro-inflammatory or anti-inflammatory. It's very context-dependent," says Justin Sonnenburg of Stanford. But if scientists could find how to harness a microorganism or group of them to have specific effects on the immune system, they might be able to crack a new class of therapeutics that could change the course of immune-mediated diseases.
4) How can a person's gut microbiome be reconfigured in a lasting way?
Measures of the adult microbiome over time show it has a high degree of stability—in fact, it can be downright stubborn. But a new, stable gut microbial ecology can be achieved when someone receives a fecal transplant for recurrent C. difficile infection. Work by Eric Alm of Massachusetts Institute of Technology (MIT) and others have shown the recipient's gut microbiota ends up looking more like the donor's, with engraftment of particular strains.
But what are the microorganisms' 'rules of engraftment'? Knowing this, it might be possible to intervene in a number of disease-associated microbiome states, changing them in a way that changed the course of the disease.
Is the infant microbiome, as shaped by birth mode and diet, responsible for health issues later in life?
5) How do early-life shapers of the gut microbiome affect health status later on?
Researchers have found two main factors that appear to shape the gut microbiome in early life, at least temporarily: mode of birth (whether vaginal or Cesarean section), and early life diet (whether formula or breast milk). These same factors are associated with an increased risk of immune and metabolic diseases. So is the infant microbiome, as shaped by birth mode and diet, responsible for health issues later in life?
Brett Finlay of the University of British Columbia has made these 'hygiene hypothesis' compatible links between the absence of certain bacteria in early life and asthma later on. "I think the bugs are shaping and pushing how our immune system develops, and if very early in life you don't have those things, it goes to a more allergic-type immune system. If you do have those bugs it gets pushed towards more normal," he says. The work could lead to targeted manipulation of the microbiome in early life to offset negative health effects.
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.