This Brain Doc Has a “Repulsive” Idea to Make Football Safer
What do football superstars Tom Brady, Drew Brees, Philip Rivers, and Adrian Peterson all have in common? Last year they wore helmets that provided the poorest protection against concussions in all the NFL.
"You're only as protected as well as the worst helmet that's out there."
A Dangerous Policy
Football helmets are rated on a one-star to five-star system based on how well they do the job of protecting the player. The league has allowed players to use their favorites, regardless of the star rating.
The Oxford-trained neuroscientist Ray Colello conducted a serious analysis of just how much the protection can vary between each level of star rating. Colello and his team of graduate students sifted through two seasons of game video to identify which players were wearing what helmets. There was "a really good correlation with position, but the correlation is much more significant based on age."
"The average player in the NFL is 26.6 years old, but the average age of a player wearing a one-star helmet is 34. And for anyone who knows football, that's ancient," the brain doc says. "Then for our two-star helmet, it's 32; and for a three-star helmet it's 29." Players were sticking with the helmets they were familiar with in college, despite the fact that equipment had improved considerably in recent years.
"You're only as protected as well as the worst helmet that's out there," Colello explains. Offering an auto analogy, he says, "It's like, if you run into the back of a Pinto, even if you are in a five-star Mercedes, that gas tank may still explode and you are still going to die."
It's one thing for a player to take a risk at scrambling his own brain; it's another matter to put a teammate or opponent at needless risk. Colello published his analysis early last year and the NFL moved quickly to ban the worst performing helmets, starting next season.
Some of the 14 players using the soon-to-be-banned helmets, like Drew Brees and Philip Rivers, made the switch to a five-star helmet at the start of training camp and stayed with it. Adrian Peterson wore a one-star helmet throughout the season.
Tom Brady tried but just couldn't get comfortable with a new bonnet and, after losing a few games, switched back to his old one in the middle of the season; he says he's going to ask the league to "grandfather in" his old helmet so he can continue to use it.
As for Colello, he's only just getting started. The brain doc has a much bigger vision for the future of football safety. He wants to prevent concussions from even occurring in the first place by creating an innovative new helmet that's unlike anything the league has ever seen.
Oxford-trained neuroscientist Ray Colello is on a mission to make football safer.
(Photo credit: VCU public affairs)
"A Force Field" of Protection
His inspiration was serendipitous; he was at home watching a football game on TV when Denver Bronco's receiver Wes Welker was hit, lay flat on the field with a concussion, and was carted off. As a commercial flickered on the screen, he ambled into the kitchen for another beer. "What those guys need is a force field protecting them," he thought to himself.
Like so many households, the refrigerator door was festooned with magnets holding his kids' school work in place. And in that eureka moment the idea popped into his head: "Maybe the repulsive force of magnets can put a break on an impact before it even occurs." Colello has spent the last few years trying to turn his concept into reality.
Newton's laws of physics – mass and speed – play out graphically in a concussion. The sudden stop of a helmet-to-helmet collision can shake the brain back and forth inside the skull like beans in a maraca. Dried beans stand up to the impact, making their distinctive musical sound; living brain tissue is much softer and not nearly so percussive. The resulting damage is a concussion.
The risk of that occurring is greater than you might think. Researchers using accelerometers inside helmets have determined that a typical college football player experiences about 600 helmet-to-helmet contacts during a season of practice and games. Each hit generates a split second peak g-force of 20 to 150 within the helmet and the odds of one causing a concussion increase sharply over 100 gs of force.
By comparison, astronauts typically experience a maximum sustained 3gs during lift off and most humans will black out around 9gs, which is why fighter pilots wear special pressure suits to counter the effects.
"It stretches the time line of impact quite dramatically. In fact in most instances, it doesn't even hit."
The NFL's fastest player, Chris Johnson, can run 19.3 mph. A collision at that speed "produces 120gs worth of force," Colello explains. "But if you can extend that time of impact by just 5 milliseconds (from 12 to 17msec) you'll shift that g-force down to 84. There is a very good chance that he won't suffer a concussion."
The neuroscientist dived into learning all he could about the physics magnets. It turns out that the most powerful commercially available magnet is an alloy made of neodymium, iron, and boron. The elements can be mixed and glued together in any shape and then an electric current is run through to make it magnetic; the direction of the current establishes the north-south poles.
A 1-pound neodymium magnet can repulse 600 times its own weight, even though the magnetic field extends less than an inch. That means it can push back a magnet inside another helmet but not affect the brain.
Crash Testing the Magnets
Colello couldn't wait to see if his idea panned out. With blessing from his wife to use their credit card, he purchased some neodymium magnets and jury-rigged experiments at home.
The reinforced plastics used in football helmets don't affect the magnetic field. And the small magnets stopped weights on gym equipment that were dropped from various heights. "It stretches the time line of impact quite dramatically. In fact in most instances, it doesn't even hit," says Colello. "We are dramatically shifting the curve" of impact.
Virginia Commonwealth University stepped in with a $50,000 innovation grant to support the next research steps. The professor ordered magnets custom-designed to fit the curvature of space inside the front and sides of existing football helmets. That makes it impossible to install them the wrong way, and ensures the magnets' poles will always repel and not attract. It adds about a pound and a half to the weight of the helmet.
a) The brain in a helmet. b) Placing the magnet. c) Measuring the impact of a helmet-to-helmet collision. d) How magnets reduce the force of impact.
(Courtesy Ray Colello)
Colello rented crash test dummy heads crammed with accelerometers and found that the magnets performed equally well at slowing collisions when fixed to a pendulum in a test that approximated a helmet and head hitting a similarly equipped helmet. It impressively reduced the force of contact.
The NFL was looking for outside-the-box thinking to prevent concussions. It was intrigued by Colello's approach and two years ago invited him to submit materials for review. To be fair to all entrants, the league proposed to subject all entries to the same standard crush test to see how well each performed in lessening impact. The only trouble was, Colello's approach was designed to avoid collisions, not lessen their impact. The test wouldn't have been a valid evaluation and he withdrew from consideration.
But Colello's work caught the attention of Stefan Duma, an engineering professor at Virginia Tech who developed the five-star rating system for football helmets.
"In theory it makes sense to use [the magnets] to slow down or reduce acceleration, that's logical," says Duma. He believes current helmet technology is nearing "the end of the physics barrier; you can only absorb so much energy in so much space," so the field is ripe for new approaches to improve helmet technology.
However, one of Duma's concerns is whether magnets "are feasible from a weight standpoint." Most helmets today weigh between two and four pounds, and a sufficiently powerful magnet might add too much weight. One possibility is using an electromagnet, which potentially could be lighter and more powerful, particularly if the power supply could be carried lower in the body, say in the shoulder pads.
Colello says his lab tests are promising enough that the concept needs to be tried out on the playing field. "We need to make enough helmets for two teams to play each other in a regulation-style game and measure the impact forces that are generated on each, and see if there is a significant reduction." He is waiting to hear from the National Institutes of Health on a grant proposal to take that next step toward dramatically reducing the risk of concussions in the NFL.
Just five milliseconds could do it.
A new injection is helping stave off RSV this season
In November 2021, Mickayla Wininger’s then one-month-old son, Malcolm, endured a terrifying bout with RSV, the respiratory syncytial (sin-SISH-uhl) virus—a common ailment that affects all age groups. Most people recover from mild, cold-like symptoms in a week or two, but RSV can be life-threatening in others, particularly infants.
Wininger, who lives in southern Illinois, was dressing Malcolm for bed when she noticed what seemed to be a minor irregularity with this breathing. She and her fiancé, Gavin McCullough, planned to take him to the hospital the next day. The matter became urgent when, in the morning, the boy’s breathing appeared to have stopped.
After they dialed 911, Malcolm started breathing again, but he ended up being hospitalized three times for RSV and defects in his heart. Eventually, he recovered fully from RSV, but “it was our worst nightmare coming to life,” Wininger recalled.
It’s a scenario that the federal government is taking steps to prevent. In July, the Food and Drug Administration approved a single-dose, long-acting injection to protect babies and toddlers. The injection, called Beyfortus, or nirsevimab, became available this October. It reduces the incidence of RSV in pre-term babies and other infants for their first RSV season. Children at highest risk for severe RSV are those who were born prematurely and have either chronic lung disease of prematurity or congenital heart disease. In those cases, RSV can progress to lower respiratory tract diseases such as pneumonia and bronchiolitis, or swelling of the lung’s small airway passages.
Each year, RSV is responsible for 2.1 million outpatient visits among children younger than five-years-old, 58,000 to 80,000 hospitalizations in this age group, and between 100 and 300 deaths, according to the Centers for Disease Control and Prevention. Transmitted through close contact with an infected person, the virus circulates on a seasonal basis in most regions of the country, typically emerging in the fall and peaking in the winter.
In August, however, the CDC issued a health advisory on a late-summer surge in severe cases of RSV among young children in Florida and Georgia. The agency predicts "increased RSV activity spreading north and west over the following two to three months.”
Infants are generally more susceptible to RSV than older people because their airways are very small, and their mechanisms to clear these passages are underdeveloped. RSV also causes mucus production and inflammation, which is more of a problem when the airway is smaller, said Jennifer Duchon, an associate professor of newborn medicine and pediatrics in the Icahn School of Medicine at Mount Sinai in New York.
In 2021 and 2022, RSV cases spiked, sending many to emergency departments. “RSV can cause serious disease in infants and some children and results in a large number of emergency department and physician office visits each year,” John Farley, director of the Office of Infectious Diseases in the FDA’s Center for Drug Evaluation and Research, said in a news release announcing the approval of the RSV drug. The decision “addresses the great need for products to help reduce the impact of RSV disease on children, families and the health care system.”
Sean O’Leary, chair of the committee on infectious diseases for the American Academy of Pediatrics, says that “we’ve never had a product like this for routine use in children, so this is very exciting news.” It is recommended for all kids under eight months old for their first RSV season. “I would encourage nirsevimab for all eligible children when it becomes available,” O’Leary said.
For those children at elevated risk of severe RSV and between the ages of 8 and 19 months, the CDC recommends one dose in their second RSV season.
The drug will be “really helpful to keep babies healthy and out of the hospital,” said O’Leary, a professor of pediatrics at the University of Colorado Anschutz Medical Campus/Children’s Hospital Colorado in Denver.
An antiviral drug called Synagis (palivizumab) has been an option to prevent serious RSV illness in high-risk infants since it was approved by the FDA in 1998. The injection must be given monthly during RSV season. However, its use is limited to “certain children considered at high risk for complications, does not help cure or treat children already suffering from serious RSV disease, and cannot prevent RSV infection,” according to the National Foundation for Infectious Diseases.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants.
Both nirsevimab and palivizumab are monoclonal antibodies that act against RSV. Monoclonal antibodies are lab-made proteins that mimic the immune system’s ability to fight off harmful pathogens such as viruses. A single intramuscular injection of nirsevimab preceding or during RSV season may provide protection.
The strategy with the new monoclonal antibody is “to extend protection to healthy infants who nonetheless are at risk because of their age, as well as infants with additional medical risk factors,” said Philippa Gordon, a pediatrician and infectious disease specialist in Brooklyn, New York, and medical adviser to Park Slope Parents, an online community support group.
No specific preventive measure is needed for older and healthier kids because they will develop active immunity, which is more durable. Meanwhile, older adults, who are also vulnerable to RSV, can receive one of two new vaccines. So can pregnant women, who pass on immunity to the fetus, Gordon said.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants, “nor is there any treatment other than giving oxygen or supportive care,” said Stanley Spinner, chief medical officer and vice president of Texas Children’s Pediatrics and Texas Children’s Urgent Care.
As with any virus, washing hands frequently and keeping infants and children away from sick people are the best defenses, Duchon said. This approach isn’t foolproof because viruses can run rampant in daycare centers, schools and parents’ workplaces, she added.
Mickayla Wininger, Malcolm’s mother, insists that family and friends wear masks, wash their hands and use hand sanitizer when they’re around her daughter and two sons. She doesn’t allow them to kiss or touch the children. Some people take it personally, but she would rather be safe than sorry.
Wininger recalls the severe anxiety caused by Malcolm's ordeal with RSV. After returning with her infant from his hospital stays, she was terrified to go to sleep. “My fiancé and I would trade shifts, so that someone was watching over our son 24 hours a day,” she said. “I was doing a night shift, so I would take caffeine pills to try and keep myself awake and would end up crashing early hours in the morning and wake up frantically thinking something happened to my son.”
Two years later, her anxiety has become more manageable, and Malcolm is doing well. “He is thriving now,” Wininger said. He recently had his second birthday and "is just the spunkiest boy you will ever meet. He looked death straight in the eyes and fought to be here today.”
Story by Big Think
For most of history, artificial intelligence (AI) has been relegated almost entirely to the realm of science fiction. Then, in late 2022, it burst into reality — seemingly out of nowhere — with the popular launch of ChatGPT, the generative AI chatbot that solves tricky problems, designs rockets, has deep conversations with users, and even aces the Bar exam.
But the truth is that before ChatGPT nabbed the public’s attention, AI was already here, and it was doing more important things than writing essays for lazy college students. Case in point: It was key to saving the lives of tens of millions of people.
AI-designed mRNA vaccines
As Dave Johnson, chief data and AI officer at Moderna, told MIT Technology Review‘s In Machines We Trust podcast in 2022, AI was integral to creating the company’s highly effective mRNA vaccine against COVID. Moderna and Pfizer/BioNTech’s mRNA vaccines collectively saved between 15 and 20 million lives, according to one estimate from 2022.
Johnson described how AI was hard at work at Moderna, well before COVID arose to infect billions. The pharmaceutical company focuses on finding mRNA therapies to fight off infectious disease, treat cancer, or thwart genetic illness, among other medical applications. Messenger RNA molecules are essentially molecular instructions for cells that tell them how to create specific proteins, which do everything from fighting infection, to catalyzing reactions, to relaying cellular messages.
Johnson and his team put AI and automated robots to work making lots of different mRNAs for scientists to experiment with. Moderna quickly went from making about 30 per month to more than one thousand. They then created AI algorithms to optimize mRNA to maximize protein production in the body — more bang for the biological buck.
For Johnson and his team’s next trick, they used AI to automate science, itself. Once Moderna’s scientists have an mRNA to experiment with, they do pre-clinical tests in the lab. They then pore over reams of data to see which mRNAs could progress to the next stage: animal trials. This process is long, repetitive, and soul-sucking — ill-suited to a creative scientist but great for a mindless AI algorithm. With scientists’ input, models were made to automate this tedious process.
“We don’t think about AI in the context of replacing humans,” says Dave Johnson, chief data and AI officer at Moderna. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
All these AI systems were in put in place over the past decade. Then COVID showed up. So when the genome sequence of the coronavirus was made public in January 2020, Moderna was off to the races pumping out and testing mRNAs that would tell cells how to manufacture the coronavirus’s spike protein so that the body’s immune system would recognize and destroy it. Within 42 days, the company had an mRNA vaccine ready to be tested in humans. It eventually went into hundreds of millions of arms.
Biotech harnesses the power of AI
Moderna is now turning its attention to other ailments that could be solved with mRNA, and the company is continuing to lean on AI. Scientists are still coming to Johnson with automation requests, which he happily obliges.
“We don’t think about AI in the context of replacing humans,” he told the Me, Myself, and AI podcast. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
Moderna, which was founded as a “digital biotech,” is undoubtedly the poster child of AI use in mRNA vaccines. Moderna recently signed a deal with IBM to use the company’s quantum computers as well as its proprietary generative AI, MoLFormer.
Moderna’s success is encouraging other companies to follow its example. In January, BioNTech, which partnered with Pfizer to make the other highly effective mRNA vaccine against COVID, acquired the company InstaDeep for $440 million to implement its machine learning AI across its mRNA medicine platform. And in May, Chinese technology giant Baidu announced an AI tool that designs super-optimized mRNA sequences in minutes. A nearly countless number of mRNA molecules can code for the same protein, but some are more stable and result in the production of more proteins. Baidu’s AI, called “LinearDesign,” finds these mRNAs. The company licensed the tool to French pharmaceutical company Sanofi.
Writing in the journal Accounts of Chemical Research in late 2021, Sebastian M. Castillo-Hair and Georg Seelig, computer engineers who focus on synthetic biology at the University of Washington, forecast that AI machine learning models will further accelerate the biotechnology research process, putting mRNA medicine into overdrive to the benefit of all.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.