This Special Music Helped Preemie Babies’ Brains Develop
Move over, Baby Einstein: New research from Switzerland shows that listening to soothing music in the first weeks of life helps encourage brain development in preterm babies.
For the study, the scientists recruited a harpist and a new-age musician to compose three pieces of music.
The Lowdown
Children who are born prematurely, between 24 and 32 weeks of pregnancy, are far more likely to survive today than they used to be—but because their brains are less developed at birth, they're still at high risk for learning difficulties and emotional disorders later in life.
Researchers in Geneva thought that the unfamiliar and stressful noises in neonatal intensive care units might be partially responsible. After all, a hospital ward filled with alarms, other infants crying, and adults bustling in and out is far more disruptive than the quiet in-utero environment the babies are used to. They decided to test whether listening to pleasant music could have a positive, counterbalancing effect on the babies' brain development.
Led by Dr. Petra Hüppi at the University of Geneva, the scientists recruited Swiss harpist and new-age musician Andreas Vollenweider (who has collaborated with the likes of Carly Simon, Bryan Adams, and Bobby McFerrin). Vollenweider developed three pieces of music specifically for the NICU babies, which were played for them five times per week. Each track was used for specific purposes: To help the baby wake up; to stimulate a baby who was already awake; and to help the baby fall back asleep.
When they reached an age equivalent to a full-term baby, the infants underwent an MRI. The researchers focused on connections within the salience network, which determines how relevant information is, and then processes and acts on it—crucial components of healthy social behavior and emotional regulation. The neural networks of preemies who had listened to Vollenweider's pieces were stronger than preterm babies who had not received the intervention, and were instead much more similar to full-term babies.
Next Up
The first infants in the study are now 6 years old—the age when cognitive problems usually become diagnosable. Researchers plan to follow up with more cognitive and socio-emotional assessments, to determine whether the effects of the music intervention have lasted.
The first infants in the study are now 6 years old—the age when cognitive problems usually become diagnosable.
The scientists note in their paper that, while they saw strong results in the babies' primary auditory cortex and thalamus connections—suggesting that they had developed an ability to recognize and respond to familiar music—there was less reaction in the regions responsible for socioemotional processing. They hypothesize that more time spent listening to music during a NICU stay could improve those connections as well; but another study would be needed to know for sure.
Open Questions
Because this initial study had a fairly small sample size (only 20 preterm infants underwent the musical intervention, with another 19 studied as a control group), and they all listened to the same music for the same amount of time, it's still undetermined whether variations in the type and frequency of music would make a difference. Are Vollenweider's harps, bells, and punji the runaway favorite, or would other styles of music help, too? (Would "Baby Shark" help … or hurt?) There's also a chance that other types of repetitive sounds, like parents speaking or singing to their children, might have similar effects.
But the biggest question is still the one that the scientists plan to tackle next: Whether the intervention lasts as the children grow up. If it does, that's great news for any family with a preemie — and for the baby-sized headphone industry.
Genetic Engineering For All: The Last Great Frontier of Human Freedom
[Editor's Note: This op/ed appears in response to January's Big Moral Question: "Where should we draw a line, if any, between the use of gene editing for the prevention and treatment of disease, and for cosmetic enhancement?" Currently, it is illegal to develop human trials for the latter in the U.S.]
Homo sapien: a bipedal primate that is thought to be the only animal to construct a moral code. Despite the genetic differences between members of our species being less than 1 percent, we come in all shapes, sizes and colors. There is no normal for human genetics.
I believe genetic freedom is the most basic human right we all should have.
One DNA base change here, another there brings us humans with light skin, red hair and big muscles. Want to be an NBA All-Star? Your genes are by far the largest determinant of your height and well, there has never been an All-Star under 5'9". Sexual reproduction makes it so that our physical traits seem more a pinch of this and a dash of that than some precise architectural masterpiece. For the most part we have no control over whether we or our children will be the next Cristiano Ronaldo or are born with a debilitating disease--unless we use genetic engineering.
Anywhere from 64% in the US to over 82% of people in China support genetic modification of individuals to help treat diseases. I imagine that number will only increase as people become more familiar with the technology and I don't think most people need convincing that genetic modification for medical treatment is a good thing. In fact, most modern drugs are genetic regulation on a fundamental level. But cosmetic genetic modification is far more controversial with only 39% of people in the US finding it agreeable. Far fewer people support modifying the genes of babies before they are born. My question is: Where does one draw a line between cosmetic and medical genetic changes?
Modifying the genetics of individuals for medical reasons started in the late 1980s and early 1990s when scientists reprogrammed viruses so that instead of causing harm when they infected people, they changed the genetics of their cells. Much has changed and and despite the success of many gene therapy trials, people are still afraid. Perhaps because of concerns over safety, but gene therapies have been tested in over 2000 clinical trials in hundreds of thousands of people. So what are we so afraid of? I asked myself that same question in 2016 and could not find a basis for the fear and so performed the first successfully cosmetic human genetic modification by putting a jellyfish gene in my skin. The experiment was simple, the monetary cost minimal, and though my skin didn't fluoresce like a jellyfish, DNA testing showed it worked and the experiment showed me what was possible.
People are afraid because we are on the cusp of the human race changing as we know it. But isn't that change all we have been striving for?
In late 2017, I wanted to explore bigger cosmetic changes, so I did another genetic experiment on myself; I injected myself with a CRISPR/Cas9 system meant to modify myostatin, a gene responsible for muscle growth and fat loss. I didn't do it because I wanted bigger muscles but because the myostatin gene is a well-studied target that has been modified in many mammals using CRISPR. I feel a responsibility to try and push boundaries that scientists in universities and large corporations can't because of committees, regulations and social acceptability. When this cutting-edge technique was tried for the first time, it wasn't in an expensive lab and it didn't cost millions of dollars. It was done by me, prepared in my home lab, and the cost of this cosmetic treatment was under $500.
Home genetic engineering lab kits like this are sold by Zayner's company for less than $2000.
I have had many people call me crazy and worse, but they don't understand that I've undertaken these experiments with much thought and hesitation. Experimenting on oneself isn't fun; it is an unfortunate situation to be in as a Ph.D. scientist who less than two years ago was fulfilling a prestigious synthetic biology fellowship at NASA. The data points to the experiment being relatively safe, and similar experimental protocols have had success, so why wait? When so much is at stake, we need to show people what is possible so that one day we all can have genetic freedom.
Zayner's arm after attempting the first CRISPR injection showed little immune response; a small red dot in the upper left forearm can be seen at the injection site.
People are afraid because we are on the cusp of the human race changing as we know it. But isn't that change all we have been striving for yet unable to obtain? Have too much or too little hair? There is a non-gene therapy treatment for that. Want to change your appearance? The global cosmetic surgery market is over $15 billion. Tattoos, dyed hair and piercings abound. We sculpt our appearance by exercise, make-up, drugs, chemicals and invasive surgeries. We try so hard to fight against our genetics in every way except genetic modification.
Being human means freedom to be who we want to be. And at the moment, no one gets to choose their genetics. Instead, nature plays a probabilistic role in the most primitive genetic engineering experiment of sexual reproduction. This dice roll can sometimes end in tragedy. Fortunately, in my case I was born with the genetics of a healthy individual. Still, I push for everyone and though my newest genetic modification experiment is ongoing, even if it doesn't work, it is only a matter of time until it does in someone.
If you prevent someone like me from changing my genetics, where do you draw the line? Only people who can't walk can get genetic modification? Only people who can't run? Only people who are predisposed to skin cancer? Don't we all deserve a choice or to give parents better ones? I believe genetic freedom is the most basic human right we all should have. We no longer need to be slaves to genetics so let's break those bonds and embrace the change brought about by allowing human genetic engineering for all no matter the reason.
[Ed. Note: Check out the opposite perspective: "Hacking Your Own Genes: A Recipe for Disaster." Then follow LeapsMag on social media to share your opinion.]
Hacking Your Own Genes: A Recipe for Disaster
Editor's Note: Our Big Moral Question this month is: "Where should we draw a line, if any, between the use of gene editing for the prevention and treatment of disease, and for cosmetic enhancement?" It is illegal in the U.S. to develop human trials for the latter, even though some people think it should be acceptable. The most outspoken supporter recently resorted to self-experimentation using CRISPR in his own makeshift lab. But critics argue that "biohackers" like him are recklessly courting harm. LeapsMag invited a leading intellectual from the Center for Genetics and Society to share her perspective.
"I want to democratize science," says biohacker extraordinaire Josiah Zayner.
This is certainly a worthy-sounding sentiment. And it is central to the ethos of biohacking, a term that's developed a bit of sprawl. Biohacking can mean non-profit community biology labs that promote "citizen science," or clever but not necessarily safe or innocuous garage-based experiments with computers and genetics, or efforts at biological self-optimization via techniques including cybernetic implants, drug supplements, and intermittent fasting.
They appear to have given little thought to whether curiosity should be bound in any way by care for social consequence.
Against that messy background, what should we make of Zayner? The thirty-something ex-NASA scientist, who describes himself as "a global leader in the BioHacker movement," put his interpretation of democracy on display last October during a CRISPR-yourself performance at a San Francisco biotech conference. In that episode, he dramatically jabbed himself with a long needle, injecting his left forearm with a home-made gene-editing concoction that he said would disrupt his myostatin genes and bulk up his muscles.
Zayner sees himself, and is seen by some fellow biohackers, as a rebel hero: an intrepid scientific adventurer willing to risk his own well-being in the tradition of self-experimentation, eager to push the boundaries of established science in the service of forging innovative modes of discovery, ready to stand up to those stodgy bureaucrats at the FDA in the name of biohacker freedom.
To others, including some in the biohacker community, he's a publicity-seeking stunt man, perhaps deluded by touches of toxic masculinity and techno-entrepreneurial ideology, peddling snake-oil with oozing ramifications.
Zayner is hardly coy about his goals being larger than Popeye-like muscles. "I want to live in a world where people are genetically modifying themselves," he told FastCompany. "I think this is, like, literally, a new era of human beings," he mused to CBS in November. "It's gonna create a whole new species of humans."
Nor does he deign to conceal his tactics. The webpage of the company he launched to sell DIY gene-editing kits (which is advised by celebrity geneticist George Church) says that Zayner is "constantly pushing the boundaries of Science outside traditional environments." He is more explicit when performing: "Yes I am a criminal. And my crime is that of curiosity," he said last August to a biohacker audience in Oakland, which according to Gizmodo erupted in applause.
Regrettably, Zayner, along with some other biohackers and their defenders in the mainstream scientific world, appear to have given little thought to whether curiosity should be bound in any way by care for social consequence.
In December, the FDA issued a brief statement warning against using DIY kits for self-administered gene editing.
Though what's most directly at risk in Zayner's self-enhancement hack is his own safety, his bad-boy celebrity status is likely to encourage emulation. A few weeks after his San Francisco performance, 27-year-old Tristan Roberts took to Facebook Live to give himself a DIY gene modification injection to keep his HIV infection in check, because he doesn't like taking the regular medications that prevent AIDS. Whatever it was that he put into his body was provided by a company that Gizmodo describes as a "mysterious biotech firm with transhumanist leanings."
Zayner doesn't outright provide DIY gene hacks to others. But among his company's offerings are a free DIY Human CRISPR Guide and a $20 CRISPR-Cas9 plasmid that targets the human myostatin gene – the one that Zayner said he was targeting to make his muscles grow. Presumably to fend off legal problems, the product page says: "This product is not injectable or meant for direct human use" – a label as toothless as the fine print on cigarette packages that breaks the news that smoking causes cancer.
Some scientists warn that Zayner's style of biohacking carries considerable dangers. Microbiologist Brian Hanley, himself a self-experimenter who now opposes "biohacking humans," focuses on the technical difficulty of purifying what's being injected. "Screwing up can kill you from endotoxin," he says. "If you get in trouble, call me. I will do my best to instruct the physician how to save your life….But I make no guarantees you will survive."
Hanley also commented on the likely effectiveness of Zayner's effort: "Either Josiah Zayner is ignorant or he is deliberately misleading people. What he suggests cannot work as advertised."
Ensuring the safety and effectiveness of medical drugs and devices is the mandate of the US Food and Drug Administration. In December, the agency issued a brief statement warning against using DIY kits for self-administered gene editing, and saying flat out that selling them is against the law.
The stem cell field provides an unfortunate model of what can go wrong.
Zayner is dismissive of the safety risks. He asks in a Buzzfeed article whether DIY CRISPR should be considered more harmful than smoking or chemotherapy, "legal and socially acceptable activities that damage your genes." This is a strange line of argument, given the decades-long battles with the tobacco industry to raise awareness about smoking's significant harms, and since the side effects of chemotherapy are typically not undertaken by choice.
But the implications of what Zayner, Roberts, and some of their fellow biohackers are promoting ripple well beyond direct harms to individuals. Their rhetoric and vision affect the larger project of biomedicine, and the fraught relationships among drug researchers, pharmaceutical companies, clinical trial subjects, patients, and the public. Writing in Scientific American, Eleanor Pauwels of the Wilson Center, who is sympathetic to biohacking, lists the down sides: "blurred boundaries between treatments and self-experimentation, peer pressure to participate in trials, exploitation of vulnerable individuals, lack of oversight concerning quality control and risk of harm, and more."
These prospects are germane to the current state of human gene editing. After decades of dashed hopes, including deaths of research subjects, "gene therapy" may now be close to deserving the promise in its name. But with safety and efficacy still being evaluated, it's especially crucial to be honest about limitations as well as possibilities.
The stem cell field provides an unfortunate model of what can go wrong. Fifteen years ago, scientists, patient advocates, and even politicians routinely indulged in wildly over-optimistic enthusiasm about the imminence of stem cell therapies. That binge of irresponsible promotion helped create the current situation of widespread stem cell fraud: hundreds of clinics in the US alone selling unproven treatments to unsuspecting and sometimes desperate patients. Many have had their wallets lightened; some have gone blind or developed strange tumors that doctors have never before seen. The FDA is scrambling to address this still-worsening situation.
Zayner-style biohacking and promotion may also impact the ongoing controversy about whether new gene editing tools should be used in human reproduction to pre-determine the traits of future children and generations. Much of the widespread opposition to "human germline modification" is grounded in concern that it would lead to a society in which real or purported genetic advantages, marketed by fertility clinics to affluent parents, would exacerbate our already shameful levels of inequality and discrimination.
With powerful new technologies increasingly shaping the world, there's a lot riding on our capacity to democratize science. But as a society we don't yet have much practice at it.
Yet Zayner is all for it. In an interview in The Guardian, he comments, "DNA defines what a species is, and I imagine it wouldn't be too long into the future when the human species almost becomes a new species because of these modifications." He notes in a blog post, "We want to grow as a species and maybe change as a species. Whether that is curing disease or immortality or mutant powers is up to you."
This brings us back to Zayner's claim that he is working to democratize science.
The conviction that gene editing involves social and political challenges, not just technical matters, has been voiced at all points on the spectrum of perspective and uncertainty. But Zayner says there's been enough talk. "I want people to stop arguing about whether it's okay to use CRISPR or not use CRISPR….It's too late: I already made the choice for you. Argument over. Let's get on with it now. Let's use this to help people. Or to give people purple skin." (Emphasis added, in case there's any doubt about Zayner's commitment to democracy.)
With powerful new technologies increasingly shaping the world, there's a lot riding on our capacity to democratize science. But as a society we don't yet have much practice at it. In fact, we're not very sure what it would look like. It would clearly mean, as Arizona State University political scientist David Guston puts it, "considering the societal outcomes of research at least as attentively as the scientific and technological outputs." It would need broad participation and demand hard work.
The involvement of serious citizen scientists in such efforts, biohackers included, could be a very good thing. But Zayner's contributions to date have not been helpful.
[Ed. Note: Check out Zayner's perspective: "Genetic Engineering for All: The Last Great Frontier of Human Freedom." Then follow LeapsMag on social media to share your opinion.]