To Make Science Engaging, We Need a Sesame Street for Adults
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
In the mid-1960s, a documentary producer in New York City wondered if the addictive jingles, clever visuals, slogans, and repetition of television ads—the ones that were captivating young children of the time—could be harnessed for good. Over the course of three months, she interviewed educators, psychologists, and artists, and the result was a bonanza of ideas.
Perhaps a new TV show could teach children letters and numbers in short animated sequences? Perhaps adults and children could read together with puppets providing comic relief and prompting interaction from the audience? And because it would be broadcast through a device already in almost every home, perhaps this show could reach across socioeconomic divides and close an early education gap?
Soon after Joan Ganz Cooney shared her landmark report, "The Potential Uses of Television in Preschool Education," in 1966, she was prototyping show ideas, attracting funding from The Carnegie Corporation, The Ford Foundation, and The Corporation for Public Broadcasting, and co-founding the Children's Television Workshop with psychologist Lloyd Morrisett. And then, on November 10, 1969, informal learning was transformed forever with the premiere of Sesame Street on public television.
For its first season, Sesame Street won three Emmy Awards and a Peabody Award. Its star, Big Bird, landed on the cover of Time Magazine, which called the show "TV's gift to children." Fifty years later, it's hard to imagine an approach to informal preschool learning that isn't Sesame Street.
And that approach can be boiled down to one word: Entertainment.
Despite decades of evidence from Sesame Street—one of the most studied television shows of all time—and more research from social science, psychology, and media communications, we haven't yet taken Ganz Cooney's concepts to heart in educating adults. Adults have news programs and documentaries and educational YouTube channels, but no Sesame Street. So why don't we? Here's how we can design a new kind of television to make science engaging and accessible for a public that is all too often intimidated by it.
We have to start from the realization that America is a nation of high-school graduates. By the end of high school, students have decided to abandon science because they think it's too difficult, and as a nation, we've made it acceptable for any one of us to say "I'm not good at science" and offload thinking to the ones who might be. So, is it surprising that a large number of Americans are likely to believe in conspiracy theories like the 25% that believe the release of COVID-19 was planned, the one in ten who believe the Moon landing was a hoax, or the 30–40% that think the condensation trails of planes are actually nefarious chemtrails? If we're meeting people where they are, the aim can't be to get the audience from an A to an A+, but from an F to a D, and without judgment of where they are starting from.
There's also a natural compulsion for a well-meaning educator to fill a literacy gap with a barrage of information, but this is what I call "factsplaining," and we know it doesn't work. And worse, it can backfire. In one study from 2014, parents were provided with factual information about vaccine safety, and it was the group that was already the most averse to vaccines that uniquely became even more averse.
Why? Our social identities and cognitive biases are stubborn gatekeepers when it comes to processing new information. We filter ideas through pre-existing beliefs—our values, our religions, our political ideologies. Incongruent ideas are rejected. Congruent ideas, no matter how absurd, are allowed through. We hear what we want to hear, and then our brains justify the input by creating narratives that preserve our identities. Even when we have all the facts, we can use them to support any worldview.
But social science has revealed many mechanisms for hijacking these processes through narrative storytelling, and this can form the foundation of a new kind of educational television.
Could new television series establish the baseline narratives for novel science like gene editing, quantum computing, or artificial intelligence?
As media creators, we can reject factsplaining and instead construct entertaining narratives that disrupt cognitive processes. Two-decade-old research tells us when people are immersed in entertaining fiction narratives, they loosen their defenses, opening a path for new information, editing attitudes, and inspiring new behavior. Where news about hot-button issues like climate change or vaccination might trigger resistance or a backfire effect, fiction can be crafted to be absorbing and, as a result, persuasive.
But the narratives can't be stuffed with information. They must be simplified. If this feels like the opposite of what an educator should be doing, it is possible to reduce the complexity of information, without oversimplification, through "exemplification," a framing device to tell the stories of individuals in specific circumstances that can speak to the greater issue without needing to explain it all. It's a technique you've seen used in biopics. The Discovery Channel true-crime miniseries Manhunt: Unabomber does many things well from a science storytelling perspective, including exemplifying the virtues of the scientific method through a character who argues for a new field of science, forensic linguistics, to catch one of the most notorious domestic terrorists in U.S. history.
We must also appeal to the audience's curiosity. We know curiosity is such a strong driver of human behavior that it can even counteract the biases put up by one's political ideology around subjects like climate change. If we treat science information like a product—and we should—advertising research tells us we can maximize curiosity though a Goldilocks effect. If the information is too complex, your show might as well be a PowerPoint presentation. If it's too simple, it's Sesame Street. There's a sweet spot for creating intrigue about new information when there's a moderate cognitive gap.
The science of "identification" tells us that the more the main character is endearing to a viewer, the more likely the viewer will adopt the character's worldview and journey of change. This insight further provides incentives to craft characters reflective of our audiences. If we accept our biases for what they are, we can understand why the messenger becomes more important than the message, because, without an appropriate messenger, the message becomes faint and ineffective. And research confirms that the stereotype-busting doctor-skeptic Dana Scully of The X-Files, a popular science-fiction series, was an inspiration for a generation of women who pursued science careers.
With these directions, we can start making a new kind of television. But is television itself still the right delivery medium? Americans do spend six hours per day—a quarter of their lives—watching video. And even with the rise of social media and apps, science-themed television shows remain popular, with four out of five adults reporting that they watch shows about science at least sometimes. CBS's The Big Bang Theory was the most-watched show on television in the 2017–2018 season, and Cartoon Network's Rick & Morty is the most popular comedy series among millennials. And medical and forensic dramas continue to be broadcast staples. So yes, it's as true today as it was in the 1980s when George Gerbner, the "cultivation theory" researcher who studied the long-term impacts of television images, wrote, "a single episode on primetime television can reach more people than all science and technology promotional efforts put together."
We know from cultivation theory that media images can shape our views of scientists. Quick, picture a scientist! Was it an old, white man with wild hair in a lab coat? If most Americans don't encounter research science firsthand, it's media that dictates how we perceive science and scientists. Characters like Sheldon Cooper and Rick Sanchez become the model. But we can correct that by representing professionals more accurately on-screen and writing characters more like Dana Scully.
Could new television series establish the baseline narratives for novel science like gene editing, quantum computing, or artificial intelligence? Or could new series counter the misinfodemics surrounding COVID-19 and vaccines through more compelling, corrective narratives? Social science has given us a blueprint suggesting they could. Binge-watching a show like the surreal NBC sitcom The Good Place doesn't replace a Ph.D. in philosophy, but its use of humor plants the seed of continued interest in a new subject. The goal of persuasive entertainment isn't to replace formal education, but it can inspire, shift attitudes, increase confidence in the knowledge of complex issues, and otherwise prime viewers for continued learning.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Why the Pope Should Officially Embrace Biotechnology
[Editor's Note: This essay is in response to our current Big Question series: "How can the religious and scientific communities work together to foster a culture that is equipped to face humanity's biggest challenges?"]
In May 2015, Pope Francis issued an encyclical with the subtitle "On Care for Our Common Home." The letter addressed various environmental issues, such as pollution and climate change, and it reminded all of us that we are to steward the Earth, not plunder it.
Without question, biotechnology has saved the lives of millions – perhaps billions – of people.
The Pope's missive demonstrates that he is both theologically sound and scientifically literate, a very rare combination. That is why he should now author an encyclical urging the world to embrace the life-giving promise of biotechnology.
Without question, biotechnology has saved the lives of millions – perhaps billions – of people. Arguably, vaccines were the most important invention in the history of mankind. It is thought that, in the 20th century alone, at least 300 million people were killed by smallpox. Today, the number is zero, thanks to vaccination. Other killers, such as measles, diphtheria, meningitis, and diarrhea, are kept at bay because of vaccines.
Biotechnology has also saved the lives of diabetics. At one time, insulin was extracted from pig pancreases, and there were fears that we would run out of it. Then, in the 1970s, crucial advances in biotechnology allowed for the gene that encodes human insulin to be expressed in bacteria. Today, diabetics can get extremely pure insulin thanks to this feat of genetic modification.
Likewise, genetic modification has improved the environment and the lives of farmers all over the world, none more so than those living in developing countries. According to a meta-analysis published in PLoS ONE, GMOs have "reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%."
Even better, GMOs also could help improve the lives of non-farmers. In poor parts of the world, malnutrition is still extremely common. People whose diets consist mostly of rice, for example, often suffer from vitamin A deficiency, which can lead to blindness. Golden Rice, which was genetically modified to contain a vitamin A precursor, was created and given away for free in an act of humanitarianism. Other researchers have created a genetically modified cassava to help combat iron and zinc deficiencies among children in Africa.
Despite these groundbreaking advances, the public is turning against biotechnology.
Biotechnology has also helped women with mitochondrial disease bear healthy children. Children inherit their mitochondria, the powerhouses of our cells, solely from their mothers. Mitochondrial defects can have devastating health consequences. Using what is colloquially called the "three-parent embryo technique," a healthy woman donates an egg. The nucleus of that egg is removed, and that of the mother-to-be is put in its place. Then, the egg is fertilized using conventional in vitro fertilization. In April 2016, the world's first baby was born using this technique.
Yet, despite these groundbreaking advances, the public is turning against biotechnology. Across America and Europe, anti-vaccine activists have helped usher in a resurgence of entirely preventable diseases, such as measles. Anti-GMO activists have blocked the implementation of Golden Rice. And other activists decry reproductive technology as "playing God."
Nonsense. These technologies improve overall welfare and save lives. Those laudable goals are shared by all the world's major religions as part of their efforts to improve the human condition. That is why it is vitally important, if science is to succeed in eradicating illness, that it gets a full-throated endorsement from powerful religious leaders.
In his 2015 encyclical, Pope Francis wrote:
Any technical solution which science claims to offer will be powerless to solve the serious problems of our world if humanity loses its compass, if we lose sight of the great motivations which make it possible for us to live in harmony, to make sacrifices and to treat others well.
He is correct. Indeed, when people are protesting life-saving vaccines, we have lost not only our moral compass but our intellect, too.
Imagine the impact he could have if Pope Francis issued an encyclical titled "On Protecting Our Most Vulnerable." He could explain that some children, stricken with cancer or suffering from an immunological disease, are unable to receive vaccines. Therefore, we all have a moral duty to be vaccinated in order to protect them through herd immunity.
Or imagine the potential impact of an encyclical titled "On Feeding the World," in which the Pope explained that rich countries have an obligation to poorer ones to feed them by all means necessary, including the use of biotechnology. If Muslim, Buddhist, and Hindu scholars throughout Asia and Africa also embraced the message, its impact could be multiplied.
In order to be successful, science needs religion; in order to be practical, religion needs science.
In order to be successful, science needs religion; in order to be practical, religion needs science.
Unfortunately, in discussions of the relationship between science and religion, we too often focus on the few areas in which they conflict. But this misses a great opportunity. By combining technological advances with moral authority, science and religion can work together to save the world.
[Ed. Note: Don't miss the other perspectives in this Big Question series, from a Rabbi/M.D. and a Reverend/molecular geneticist.]
Viv spent nearly an hour choosing her body.
She considered going as her eight year-old self. She would stand eye-to-eye with her father in his hospital bed, shedding tears and crying: please don't go, daddy. But that was too obvious. It would offend him.
He became data coursing through a network, able to embody any form, to outlive physical decay.
She considered her eighteen year-old self. She would lean over him, scrawny and tall, her lips trembling with anger: you're being selfish, dad. But that would lead to shouting.
She considered every form, even reviving people from the past: her mother, her grandfather, her little sister Mary. How would her father react to Mary walking in? He would think himself dead. She could whisper a message to him: Stay alive, dad. God commands it.
In the end, Viv chose the look of her last days as a biological person. Thirty-one years old, her auburn hair cut short, her black eyes full of longing. She watched the body print in silicon over robotic armature.
When it blinked to life, Viv stood in front of a mirror. Her face was appropriately somber, her mind in sync with her new muscles. Without thinking, she stretched her arms, arched her body, twirled on her tiptoes. She had forgotten the pleasure of sensation.
"I should do this…" The voice resonated through her. She could not help but smile. "I should do this more often… often… often." Every repetition thrilled her with sound. She began to sing an old favorite: "Times have changed… and we've often…"
But she stopped herself. This was not a day for singing.
Viv clothed her body in a blue dress, packed her tablet in a briefcase, stood in front of the mirror one last time. "I'll be there in five," she said aloud, though she did not need to.
A man's voice answered in her mind: I'm not coming.
"Gabe…"
There's no point, said the voice. We know what he'll say.
"We have to try."
I won't see him dying, Viv.
The clenching of her jaw felt like the old days. Her brother made a habit of last-minute decisions, without concern for how they affected other people, most often her.
She remembered the day he became an everperson. It was soon after their mother's death. They were supposed to visit their father in mourning, but Gabe disappeared without explanation. Viv took the full burden of solace on herself. She sat with her father in a small room, with an old Persian rug and stale furniture. His mustache was beginning to gray, his eyes beginning to wrinkle. "She's with your sister now," he said. "Your mom and Mary, I can…" He leaned in to whisper, "I can almost hear them, at night, laughing on the other side. They tell me to wait… they tell me to wait." Viv nodded for him, pretending to believe, wishing she could.
Gabe did not return her calls that evening. The next day, she began to worry. The day after, she began to look. He made no effort to hide, he simply neglected to tell her the new plan.
Gabe had taken the money from his inheritance, and booked himself an everence. It was something new back then. Viv did not understand the science, but she knew it was a destructive process. His physical brain was destroyed by lasers that scanned it neuron by neuron, creating a digital replica. He became data coursing through a network, able to embody any form, to outlive physical decay. He became an everperson.
It took three days to complete. Viv went to the facility, a converted warehouse by the Bay Bridge. She watched the new Gabe being printed over robotic armature, taking the form of his last biological self, to help with the transition. When he blinked to life, she did not know if he would be the same person, or an imperfect copy of an imperfect copy. But Gabe was totally oblivious to the pain he caused her by disappearing in that way. No robot, she thought, could be so callous.
When Viv made her own decision to everize, she deliberated for weeks, thinking through the consequences and conversations to come. Afterwards, she sat with her father in that same small room, with the Persian rug older, the furniture staler, a new cat purring at his feet.
"But it's suicide," he said.
"It's the opposite, dad. It's eternal life."
"You'd be a robot. You wouldn't be you."
"Gabe's the same as he ever was," she noted the resentment in her voice. "He's just not… physical, until he wants to be."
Her father exhaled an Arabic phrase he was using more often in his old age. La hawla wa la quwata illa billah. She had never learned his native tongue, but she looked up the phrase to understand him better. It meant something like: there is no power except in God. It was a sigh of resignation.
"Vivian," he said eventually, "Your soul is not your brain. Your soul lives on. If you kill yourself, you... it's unforgivable. Don't you want to see mom in heaven? Mary? Me?"
She wanted to believe. She wanted painfully. But when she spoke, it was barely a whisper. "I don't think that will happen, dad."
Fewer biological people meant little need for hospitals, or doctors. It would close soon.
It was the first she had ever confessed to him about God or Heaven. In as steady a voice as he could manage, her father said: "You're an adult, Viv. You do what you think is best."
She came to visit sometimes, as an everperson. He could not tell at first. But as the years went by, as his eyes wrinkled, and his hair grayed, he noticed that Viv never aged. One day he stopped talking to her. Another she stopped coming.
Now he was waiting out the last days of his life alone in a hospital bed. Viv did not want to say goodbye. It seemed such a waste.
You don't have to, Gabe spoke into her mind. Get him to sign, say anything, say it's for selling the house. Once we have full power of attorney, we can decide for him.
"It's not right." She noticed herself speaking aloud on the hoverbus. Nine nervous faces turned to her.
It's not right, she continued in her mind. Dad never forced us to pray, never forced us to —
That was mom.
But he loved her. He never changed her mind, he raised us to question, and he quietly believed. He has every right to live his way, just like we did.
To live. Not to die... When he's an everperson, he'll thank us.
That gave her pause. It might be true. She remembered her first moments as an everperson, suddenly linked to countless other minds, waking to the full expanse of human knowledge like sunlight through an open window, breathless and unexpected.
Still, she said, it's not right.
So you want him to die?
I want to convince him.
And what if you don't? There was panic in his voice. Gabe steadied himself. You brought your tablet, Viv. You know what it's for. Get him to sign.
And what if I don't?
I'll figure something out, with or without you. I won't let him die, Viv. Not this day and age.
Viv kept quiet the rest of her way there. She played memories in her mind, of every conversation she ever had with her father, every time he read her a verse or taught her a parable. She looked for a way to convince him, some doubt, some chink in his armor of belief. But she got distracted by the world outside.
It was strange to pass for a time through physical space. It took longer than she expected. Now watching the sunlight refract through the hoverbus window, she was mesmerized. Every sensation felt more real, more vivid than her memory. "I should do this more often," she said aloud.
The hospital smelled like death. It had fallen into disrepair since her mother's illness. Fewer biological people meant little need for hospitals, or doctors. It would close soon, she thought. Her footsteps echoed through the halls, along with the sounds of old televisions playing old films to keep the patients company.
The room she entered had no sound, except the whirring machines. No light, except an eerie glow filtering through the curtains. The figure on the bed was her father, his breathing strained, his skin cracked like the desert. She closed the door behind her.
When her father turned, she saw a flicker of joy in his eyes. It disappeared.
"La hawla wa la… I thought it was her."
"I am her."
He winced. "She died some twenty years ago."
Viv sat next to him. The machines whirred around them, keeping his body alive another day, or hour, or minute. "It doesn't look good, dad."
"I know."
"You broke a promise."
He held her gaze. "I did?"
"You said we'd see the bats in Australia."
"You were scared of bats."
"And you said they were cute in Oz, the giant bats, like upside down puppies chewing bananas."
He smiled, but that was a long time ago. "Your mom was alive then… Gabe… You were alive…"
"I'm alive now, dad. Look at me. I'm Viv. Vivian Fatema. Your daughter. Half mom, half you. I'm the same person I was."
His eyes shifted. She sensed he wanted to believe. She held his hand and squeezed it. She felt him squeezing back. "I want you to stay, dad."
"There's nothing for me here."
"I'm here."
"You don't love me, Viv. You're a robot."
His hand let go. "You're there… I don't know where. I have a lot to answer for, Viv. I pray. I pray every day, five times a day, sometimes more. I pray that God forgive you for what you did, forgive me for my part, forgive Gabriel... I wish I could stay, love, but… Everyone I love is on the other side."
It hurt her to say the next words: "It's not real, dad."
"Of course you'd say that." He turned his body away from her.
"Please, dad."
She listened to his breathing.
"I love you," she said.
"You don't love me, Viv. You're a robot."
She lowered her head against the bed. She kneeled for countless breaths. It took all her strength to stand up again.
Viv took her briefcase, pulled out her tablet. She stood tapping at the screen for some time. The clenching of her jaw felt like the old days.
"Before I go, I need you to sign something. It's a power of attorney for the house. We can't sell it without you."
"You're selling the house?"
She shrugged. "It's no use to a robot."
His bony finger signed the screen without reading it. She kissed his forehead goodbye.
"Viv?" She stopped. "Before you go, could you open the curtains?"
She did. Her last image of him was a frail old body gazing at the moving clouds.
On the hoverbus home, Viv turned against the window outside. She pressed the briefcase to her like a hug, her mechanical heart thumping against it. Every heartbeat brought a memory back of her biological life. "I should do this more…" She whispered to herself, not caring who might hear. The sunset turned violet.
You made him sign. Gabe sounded like triumph.
"I did."
You did the right thing.
"I know."
Let me see.
She pulled out her tablet and, with a touch, uploaded the file.
Where's my name? Gabe asked. I only see your name.
"I changed it."
What do you mean you "changed it"?
"I changed my mind last minute, Gabe. I didn't think to tell you."
That's funny, sis. Very funny.
"It's not funny at all, Gabe. It's dead serious. I have power of attorney. I'm going to bury him next to mom and Mary."
No… There's no way.
"It's my choice now."
I can't watch him go, Viv. I can't. Don't be selfish.
"I'll miss him." She felt a pain in her chest. "I'll miss him too." Her voice was different now. "But it's what he wanted."
Gabe left her. She heard nothing but her thoughts. Unbearable thoughts.
Viv turned to the darkening world outside. She found her reflection instead, her reflection in tears. She saw her father's eyes.