To Make Science Engaging, We Need a Sesame Street for Adults
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
In the mid-1960s, a documentary producer in New York City wondered if the addictive jingles, clever visuals, slogans, and repetition of television ads—the ones that were captivating young children of the time—could be harnessed for good. Over the course of three months, she interviewed educators, psychologists, and artists, and the result was a bonanza of ideas.
Perhaps a new TV show could teach children letters and numbers in short animated sequences? Perhaps adults and children could read together with puppets providing comic relief and prompting interaction from the audience? And because it would be broadcast through a device already in almost every home, perhaps this show could reach across socioeconomic divides and close an early education gap?
Soon after Joan Ganz Cooney shared her landmark report, "The Potential Uses of Television in Preschool Education," in 1966, she was prototyping show ideas, attracting funding from The Carnegie Corporation, The Ford Foundation, and The Corporation for Public Broadcasting, and co-founding the Children's Television Workshop with psychologist Lloyd Morrisett. And then, on November 10, 1969, informal learning was transformed forever with the premiere of Sesame Street on public television.
For its first season, Sesame Street won three Emmy Awards and a Peabody Award. Its star, Big Bird, landed on the cover of Time Magazine, which called the show "TV's gift to children." Fifty years later, it's hard to imagine an approach to informal preschool learning that isn't Sesame Street.
And that approach can be boiled down to one word: Entertainment.
Despite decades of evidence from Sesame Street—one of the most studied television shows of all time—and more research from social science, psychology, and media communications, we haven't yet taken Ganz Cooney's concepts to heart in educating adults. Adults have news programs and documentaries and educational YouTube channels, but no Sesame Street. So why don't we? Here's how we can design a new kind of television to make science engaging and accessible for a public that is all too often intimidated by it.
We have to start from the realization that America is a nation of high-school graduates. By the end of high school, students have decided to abandon science because they think it's too difficult, and as a nation, we've made it acceptable for any one of us to say "I'm not good at science" and offload thinking to the ones who might be. So, is it surprising that a large number of Americans are likely to believe in conspiracy theories like the 25% that believe the release of COVID-19 was planned, the one in ten who believe the Moon landing was a hoax, or the 30–40% that think the condensation trails of planes are actually nefarious chemtrails? If we're meeting people where they are, the aim can't be to get the audience from an A to an A+, but from an F to a D, and without judgment of where they are starting from.
There's also a natural compulsion for a well-meaning educator to fill a literacy gap with a barrage of information, but this is what I call "factsplaining," and we know it doesn't work. And worse, it can backfire. In one study from 2014, parents were provided with factual information about vaccine safety, and it was the group that was already the most averse to vaccines that uniquely became even more averse.
Why? Our social identities and cognitive biases are stubborn gatekeepers when it comes to processing new information. We filter ideas through pre-existing beliefs—our values, our religions, our political ideologies. Incongruent ideas are rejected. Congruent ideas, no matter how absurd, are allowed through. We hear what we want to hear, and then our brains justify the input by creating narratives that preserve our identities. Even when we have all the facts, we can use them to support any worldview.
But social science has revealed many mechanisms for hijacking these processes through narrative storytelling, and this can form the foundation of a new kind of educational television.
Could new television series establish the baseline narratives for novel science like gene editing, quantum computing, or artificial intelligence?
As media creators, we can reject factsplaining and instead construct entertaining narratives that disrupt cognitive processes. Two-decade-old research tells us when people are immersed in entertaining fiction narratives, they loosen their defenses, opening a path for new information, editing attitudes, and inspiring new behavior. Where news about hot-button issues like climate change or vaccination might trigger resistance or a backfire effect, fiction can be crafted to be absorbing and, as a result, persuasive.
But the narratives can't be stuffed with information. They must be simplified. If this feels like the opposite of what an educator should be doing, it is possible to reduce the complexity of information, without oversimplification, through "exemplification," a framing device to tell the stories of individuals in specific circumstances that can speak to the greater issue without needing to explain it all. It's a technique you've seen used in biopics. The Discovery Channel true-crime miniseries Manhunt: Unabomber does many things well from a science storytelling perspective, including exemplifying the virtues of the scientific method through a character who argues for a new field of science, forensic linguistics, to catch one of the most notorious domestic terrorists in U.S. history.
We must also appeal to the audience's curiosity. We know curiosity is such a strong driver of human behavior that it can even counteract the biases put up by one's political ideology around subjects like climate change. If we treat science information like a product—and we should—advertising research tells us we can maximize curiosity though a Goldilocks effect. If the information is too complex, your show might as well be a PowerPoint presentation. If it's too simple, it's Sesame Street. There's a sweet spot for creating intrigue about new information when there's a moderate cognitive gap.
The science of "identification" tells us that the more the main character is endearing to a viewer, the more likely the viewer will adopt the character's worldview and journey of change. This insight further provides incentives to craft characters reflective of our audiences. If we accept our biases for what they are, we can understand why the messenger becomes more important than the message, because, without an appropriate messenger, the message becomes faint and ineffective. And research confirms that the stereotype-busting doctor-skeptic Dana Scully of The X-Files, a popular science-fiction series, was an inspiration for a generation of women who pursued science careers.
With these directions, we can start making a new kind of television. But is television itself still the right delivery medium? Americans do spend six hours per day—a quarter of their lives—watching video. And even with the rise of social media and apps, science-themed television shows remain popular, with four out of five adults reporting that they watch shows about science at least sometimes. CBS's The Big Bang Theory was the most-watched show on television in the 2017–2018 season, and Cartoon Network's Rick & Morty is the most popular comedy series among millennials. And medical and forensic dramas continue to be broadcast staples. So yes, it's as true today as it was in the 1980s when George Gerbner, the "cultivation theory" researcher who studied the long-term impacts of television images, wrote, "a single episode on primetime television can reach more people than all science and technology promotional efforts put together."
We know from cultivation theory that media images can shape our views of scientists. Quick, picture a scientist! Was it an old, white man with wild hair in a lab coat? If most Americans don't encounter research science firsthand, it's media that dictates how we perceive science and scientists. Characters like Sheldon Cooper and Rick Sanchez become the model. But we can correct that by representing professionals more accurately on-screen and writing characters more like Dana Scully.
Could new television series establish the baseline narratives for novel science like gene editing, quantum computing, or artificial intelligence? Or could new series counter the misinfodemics surrounding COVID-19 and vaccines through more compelling, corrective narratives? Social science has given us a blueprint suggesting they could. Binge-watching a show like the surreal NBC sitcom The Good Place doesn't replace a Ph.D. in philosophy, but its use of humor plants the seed of continued interest in a new subject. The goal of persuasive entertainment isn't to replace formal education, but it can inspire, shift attitudes, increase confidence in the knowledge of complex issues, and otherwise prime viewers for continued learning.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Should Organ Donors Be Paid?
Deanna Santana had assumed that people on organ transplant lists received matches. She didn't know some died while waiting. But in May 2011, after her 17-year-old son, Scott, was killed in a car accident, she learned what a precious gift organ and tissue donation can be.
"I would estimate it cost our family about $4,000 for me to donate a kidney to a stranger."
His heart, lungs, kidneys, liver and pancreas saved five people. His corneas enabled two others to see. And his bones, connective tissues and veins helped 73 individuals.
The donation's impact had a profound effect on his mother as well. In September 2016, she agreed to donate a kidney in a paired exchange of four people making the same sacrifice for four compatible strangers.
She gave up two weeks' worth of paid vacation to recuperate and covered lodging costs for loved ones during her transplant. Eventually, she qualified for state disability for part of her leave, but the compensation was less than her salary as public education and relations manager at Sierra Donor Services, an organ procurement organization in West Sacramento, California.
"I would estimate it cost our family about $4,000 for me to donate a kidney to a stranger," says Santana, 51. Despite the monetary hardship, she "would do it again in a heartbeat."
While some contend it's exploitative to entice organ donors and their families with compensation, others maintain they should be rewarded for extending their generosity while risking complications and recovering from donation surgery. But many agree on one point: The focus should be less on paying donors and more on removing financial barriers that may discourage interested prospects from doing a good deed.
"There's significant potential risk associated with donating a kidney, some of which we're continuing to learn," says transplant surgeon Matthew Cooper, a board member of the National Kidney Foundation and co-chair of its Transplant Task Force.
Although most kidneys are removed laparoscopically, reducing hospitalization and recuperation time, complications can occur. The risks include wound and urinary tract infections, pneumonia, blood clots, injury to local nerves causing decreased sensation in the hip or thigh, acute blood loss requiring transfusion and even death, Cooper says.
"We think that donation is a cost-neutral opportunity. It, in fact, is not."
Meanwhile, from a financial standpoint, estimates have found it costs a kidney donor in the United States an average of $3,000 to navigate the entire transplant process, which may include time off from work, travel to and from the hospital, accommodations, food and child care expenses.
"We think that donation is a cost-neutral opportunity. It, in fact, is not," says Cooper, who is also Director of Kidney and Pancreas Transplantation at MedStar Georgetown Transplant Institute in Washington, D.C.
The National Organ Transplant Act of 1984 makes it illegal to sell human organs but did not prohibit payment for the donation of human plasma, sperm and egg cells.
Unlike plasma, sperm and eggs cells—which are "renewable resources"—a kidney is irreplaceable, says John J. Friedewald, a nephrologist who is medical director of kidney transplantation at Northwestern Memorial Hospital in Chicago.
Offering some sort of incentives could lessen the overall burden on donors while benefiting many more potential recipients. "We can eliminate the people waiting on the list and dying, at least for kidneys," Friedewald says.
On the other hand, incentives may influence an individual to the point that the donation is made purely for monetary gain. "It's a delicate balance," he explains, "because so much of the transplant system has been built on altruism."
That's where doing away with the "disincentives" comes into the equation. Compensating donors for the costs they endure would be a reasonable compromise, Friedewald says.
Depending on the state, living donors may deduct up to $10,000 from their adjusted gross income under the Organ Donation Tax Deduction Act for the year in which the transplantation occurs. "Human organ" applies to all or part of a liver, pancreas, kidney, intestine, lung or bone marrow. The subtracted modification may be claimed for only unreimbursed travel and lodging expenses and lost wages.
For some or many donors, the tax credit doesn't go far enough in offsetting their losses, but they often take it in stride, says Chaya Lipschutz, a Brooklyn, N.Y.-based matchmaker for donors and recipients, who launched the website KidneyMitzvah.com in 2009.
Seeking compensation for lost wages "is extremely rare" in her experience. "In all the years of doing this," she recalls, "I only had two people who donated a kidney who needed to get paid for lost wages." She finds it "pretty amazing that mostly all who contact don't ask."
Lipschutz, an Orthodox Jew, has walked in a donor's shoes. In September 2005, at age 48, she donated a kidney to a stranger after coming across an ad in a weekly Jewish newspaper. The ad stated: "Please help save a Jewish life—New Jersey mother of two in dire need of kidney—Whoever saves one life from Israel it is as if they saved an entire nation."
To make matches, Lipschutz posts in various online groups in the United States and Israel. Donors in Israel may receive "refunds" for loss of earnings, travel expenses, psychological treatment, recovery leave, and insurance. They also qualify for visits to national parks and nature reserves without entrance fees, Lipschutz says.
"There has been an attempt to figure out what would constitute fair compensation without the appearance that people are selling their organs or their loved ones' organs."
Kidneys can be procured from healthy living donors or patients who have undergone circulatory or brain death.
"The real dilemma arises with payment for living donation, which would favor poorer individuals to donate who would not necessarily do so," says Dr. Cheryl L. Kunis, a New York-based nephrologist whose practice consists primarily of kidney transplant recipients. "In addition, such payment for living donation has not demonstrated to improve a donor's socioeconomic status globally."
Living kidney donation has the highest success rate. But organs from young and previously healthy individuals who die in accidents or from overdoses, especially in the opioid epidemic, often work just as well as kidneys from cadaveric donors who succumb to trauma, Kunis says.
In these tragic circumstances, she notes that the decision to donate is often left to an individual's grieving family members when a living will isn't available. A payment toward funeral expenses, for instance, could tip their decision in favor of organ donation.
A similar scenario presents when a patient with a beating heart is on the verge of dying, and the family is unsure about consenting to organ donation, says Jonathan D. Moreno, a professor in the department of medical ethics and health policy at the University of Pennsylvania.
"There has been an attempt to figure out what would constitute fair compensation," he says, "without the appearance that people are selling their organs or their loved ones' organs."
The overarching concern remains the same: Compensating organ donors could lead to exploitation of socioeconomically disadvantaged groups. "What's likely to finally resolve" this bioethics debate, Moreno foresees, "is patient-compatible organs grown in pigs as the basic science of xenotransplants (between species) seems to be progressing."
Cooper, the transplant surgeon at Georgetown, believes more potential donors would come forward if financial barriers weren't an issue. Of the ones who end up giving a part of themselves, with or without reimbursement, "the overwhelming majority look back upon it as an extremely positive experience," he says. After all, "they're lifesavers. They should be celebrated."
Today’s Focus on STEM Education Is Missing A Crucial Point
I once saw a fascinating TED talk on 3D printing. As I watched the presenter discuss the custom fabrication, not of plastic gears or figurines, but of living, implantable kidneys, I thought I was finally living in the world of Star Trek, and I experienced a flush of that eager, expectant enthusiasm I felt as a child looking toward the future. I looked at my current career and felt a rejuvenation of my commitment to teach young people the power of science.
The well-rounded education of human beings needs to include lessons learned both from a study of the physical world, and from a study of humanity.
Whether we are teachers or not, those of us who admire technology and innovation, and who wish to support progress, usually embrace the importance of educating the next generation of scientists and inventors. Growing a healthy technological civilization takes a lot of work, skill, and wisdom, and its continued health depends on future generations of competent thinkers. Thus, we may find it encouraging that there is currently an abundance of interest in STEM– the common acronym for the study of science, technology, engineering, and math.
But education is as challenging an endeavor as science itself. Educating youth--if we want to do it right--requires as much thought, work, and expertise as discovering a cure or pioneering regenerative medicine. Before we give our money, time, or support to any particular school or policy, let's give some thought to the details of the educational process.
A Well-Balanced Diet
For one thing, STEM education cannot stand in isolation. The well-rounded education of human beings needs to include lessons learned both from a study of the physical world, and from a study of humanity. This is especially true for the basic education of children, but it is true even for college students. And even for those in science and engineering, there are important lessons to be learned from the study of history, literature, and art.
Scientists have their own emotions and values, and also need financial support. The fruits of their labor ultimately benefit other people. How are we all to function together in our division-of-labor society, without some knowledge of the way societies work? How are we to fully thrive and enjoy life, without some understanding of ourselves, our motives, our moral values, and our relationships to others? STEM education needs the humanities as a partner. That flourishing civilization we dream of requires both technical competence and informed life-choices.
Think for Yourself (Even in Science)
Perhaps even more important than what is taught, is the subject of how things are taught. We want our children to learn the skill of thinking independently, but even in the sciences, we often fail completely to demonstrate how. Instead of teaching science as a thinking process, we indoctrinate, using the grand discoveries of the great scientists as our sacred texts. But consider the words of Isaac Newton himself, regarding rote learning:
A Vulgar Mechanick can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct it, and if you put him out of his road he is at a stand. Whereas he that is able to reason nimbly and judiciously about figure, force, and motion, is never at rest till he gets over every rub.
What's the point of all this formal schooling in the first place? Is it, as many of the proponents of STEM education might argue, to train students for a "good" career?
If our goal is to help students "reason nimbly" about the world around them, as the great scientists themselves did, are we succeeding? When we "teach" middle school students about DNA or cellular respiration by presenting as our only supporting evidence cartoon pictures, are we showing students a process of discovery based on evidence and hard work? Or are we just training them to memorize and repeat what the authorities say?
A useful education needs to give students the skill of following a line of reasoning, of asking rational questions, and of chewing things through in their minds--even if we regard the material as beyond question. Besides feeding students a well-balanced diet of knowledge, healthy schooling needs to teach them to digest this information thoroughly.
Thinking Training
Now step back for a moment and think about the purpose of education. What's the point of all this formal schooling in the first place? Is it, as many of the proponents of STEM education might argue, to train students for a "good" career? That view may have some validity for young adults, who are beginning to choose electives in favored subjects, and have started to choose a direction for their career.
But for the basic education of children, this way of thinking is presumptuous and disastrous. I would argue that the central purpose of a basic education is not to teach children how to perform this or that particular skill, but simply to teach them to think clearly. We should not be aiming to provide job training, but thinking training. We should be helping children learn how to "reason nimbly" about the world around them, and breathing life into their thinking processes, by which they will grapple with the events and circumstances of their lives.
So as we admire innovation, dream of a wonderful future, and attempt to nurture the next generation of scientists and engineers, instead of obsessing over STEM education, let us focus on rational education. Let's worry about showing children how to think--about all the important things in life. Let's give them the basic facts of human existence -- physical and humanitarian -- and show them how to fluently and logically understand them.
Some students will become the next generation of creators, and some will follow other careers, but together -- if they are educated properly -- they will continue to grow their inheritance, and to keep our civilization healthy and flourishing, in body and in mind.