New drug for schizophrenia could meet desperate need for better treatments

New drug for schizophrenia could meet desperate need for better treatments

The field of treating schizophrenia with drugs has been stuck in a long drought but, this month, a late-stage clinical trial found a new drug called KarXT could treat a range of symptoms.

Adobe Stock

Schizophrenia is a debilitating mental health condition that affects around 24 million people worldwide. Patients experience hallucinations and delusions when they develop schizophrenia, with experts referring to these new thoughts and behaviors as positive symptoms. They also suffer from negative symptoms in which they lose important functions, suffering from dulled emotions, lack of purpose and social withdrawal.

Currently available drugs can control only a portion of these symptoms but, on August 8th, Karuna Therapeutics announced its completion of a phase 3 clinical trial that found a new drug called KarXT could treat both positive and negative symptoms of schizophrenia. It could mean substantial progress against a problem that has stymied scientists for decades.


A long-standing problem

Since the 1950s, antipsychotics have been used to treat schizophrenia. People who suffer from it are thought to have too much of a brain chemical called dopamine, and antipsychotics work by blocking dopamine receptors in the brain. They can be effective in treating positive symptoms but have little impact on the negative ones, which can be devastating for a patient’s quality of life, making it difficult to maintain employment and have successful relationships. About 30 percent of schizophrenia patients don't actually respond to antipsychotics at all. Current drugs can also have adverse side effects including elevated cholesterol, high blood pressure, diabetes and movements that patients cannot control.

The recent clinical trial heralds a new treatment approach. “We believe it marks an important advancement for patients given its new and completely different mechanism of action from current therapies,” says Andrew Miller, COO of Karuna.

Scientists have been looking to develop alternatives. However, “the field of drug treatment of schizophrenia is currently in the doldrums,” says Peter McKenna, a senior researcher at FIDMAG Research Foundation in Spain which specialises in mental health.

In the 2000s there was a major push to target a brain receptor for a chemical called glutamate. Evidence suggested that this receptor is abnormal in the brains of schizophrenia patients, but attempts to try glutamate failed in clinical trials.

After that, many pharmaceutical companies dropped out of the race for a more useful treatment. But some companies continued to search, such as Karuna Therapeutics, led by founder and Chief Operating Officer Andrew Miller and CEO Steve Paul. The recent clinical trial suggests their persistence has led to an important breakthrough with their drug, KarXT. “We believe it marks an important advancement for patients given its new and completely different mechanism of action from current therapies,” Miller says.

How it works

Neurotransmitters are chemical messengers that pass signals between neurons. To work effectively, neurotransmitters need a receptor to bind to. A neurotransmitter called acetylcholine seems to be especially important in schizophrenia. It interacts with sites called muscarinic receptors, which are involved in the network of nerves that calm your body after a stressful event. Post mortem studies in people with schizophrenia have shown that two muscarinic receptors in the brain, the M1 and M4 receptors, are activated at unusually low levels because they don’t receive enough signals from acetylcholine.

The M4 receptor appears to play a role in psychosis. The M1 receptor is also associated with psychosis but is primarily thought to be involved in cognition. KarXT, taken orally, works by activating both of these receptors to signal properly. It is this twofold action that seems to explain its effectiveness. “[The drug’s] design enables the preferential stimulation of these muscarinic receptors in the brain,” Miller says.

How it developed

It all started in the early 1990s when Paul was at pharmaceutical company Eli Lilly. He discovered that Xanomeline, the drug they were testing on Alzheimer's patients, had antipsychotic effects. It worked by stimulating M1 and M4 receptors, so he and his colleagues decided to test Xanomeline on schizophrenia patients, supported by research on the connection between muscarinic receptors and psychosis. They found that Xanomeline reduced both positive and negative symptoms.

Unfortunately, it also caused significant side effects. The problem was that stimulating the M1 and M4 receptors in the brain also stimulated muscarinic receptors in the body that led to severe vomiting, diarrhea and even the temporary loss of consciousness.

In the end, Eli Lilly discontinued the clinical trials for the drug, but Miller set up Karuna Therapeutics to develop a solution. “I was determined to find a way to harness the therapeutic benefit demonstrated in studies of Xanomeline, while eliminating side effects that limited its development,” Miller says.

He analysed over 7,000 possible ways of mixing Xanomeline with other agents before settling on KarXT. It combines Xanomeline with a drug called Trospium Chloride, which blocks muscarinic receptors in the body – taking care of the side effects such as vomiting – but leaves them unblocked in the brain. Paul was so excited by Miller’s progress that he joined Karuna after leaving Eli Lilly and founding two previous startups.

“It's a very important approach,” says Rick Adams, Future Leaders Fellow in the Institute of Cognitive Neuroscience and Centre for Medical Image Computing at University College London. “We are in desperate need of alternative drug targets and this target is one of the best. There are other alternative targets, but not many are as close to being successful as the muscarinic receptor drug.”

Clinical Trial

Following a successful phase 2 clinical trial in 2019, the most recent trial involved 126 patients who were given KarXT, and 126 who were given a placebo. Compared to the placebo, patients taking KarXT had a significant 9.6 point reduction in the positive and negative syndrome scale (PANSS), the standard for rating schizophrenic symptoms.

KarXT also led to statistically significant declines in positive and negative symptoms compared to the placebo. “The results suggest that KarXT could be a potentially game-changing option in the management of both positive and negative symptoms of schizophrenia,” Miller says.

Robert McCutcheon, a psychiatrist and neuroscientist at Oxford University, is optimistic about the side effects but highlights the need for more safety trials.

McKenna, the researcher at FIDMAG Foundation, agrees about the drug’s potential. “The new [phase 3] study is positive,” he says. “It is reassuring that one is not dealing with a drug that works in one trial and then inexplicably fails in the next one.”

Robert McCutcheon, a psychiatrist and neuroscientist at Oxford University, said the drug is an unprecedented step forward. “KarXT is one of the first drugs with a novel mechanism of action to show promise in clinical trials.”

Even though the drug blocks muscarine receptors in the body, some patients still suffered from adverse side effects like vomiting, dizziness and diarrhea. But in general, these effects were mild to moderate, especially compared to dopamine-blocking antipsychotics or Xanomeline on its own.

McCutcheon is optimistic about the side effects but highlights the need for more safety trials. “The trial results suggest that gastrointestinal side effects appear to be manageable,” he says. “We know, however, from previous antipsychotic drugs that the full picture regarding the extent of side effects can sometimes take longer to become apparent to clinicians and patients. Careful ongoing assessment during a longer period of treatment will therefore be important.”

The Future

The team is currently conducting three other trials to evaluate the efficacy and long-term safety of KarXT. Their goal is to receive FDA approval next year.

Karuna is also conducting trials to evaluate the effectiveness of KarXT in treating psychosis in patients suffering from Alzheimer’s.

The big hope is that they will soon be able to provide a radically different drug to help many patients with schizophrenia. “We are another step closer to potentially providing the first new class of medicine in more than 50 years to the millions of people worldwide living with schizophrenia,” says Miller.

Sarah Philip
Sarah Philip is a London-based freelance journalist who writes about science, film and TV. You can follow her on Twitter @sarahph1lip.
Democratize the White Coat by Honoring Black, Indigenous, and People of Color in Science

Celebrating BIPOC's achievements in science are a strong first step to make science a guiding force for all.

Unsplash

This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.


Journalists, educators, and curators have responded to Black Lives Matter by highlighting the history and achievements of Black Americans in a variety of fields, including science. The movement has also sparked important demands to address longstanding scientific inequities such as lack of access to quality healthcare and the disproportionate impact of climate change and environmental pollution on neighborhoods of Black, Indigenous, and people of color (BIPOC). Making such improvements requires bringing BIPOC into science and into positions of leadership in laboratories, graduate schools, medical practices, and clinical trials. The moment is right to challenge scientific gatekeepers to respond to Black Lives Matter by widening the pathways that determine who becomes a scientist, a researcher, or a clinician.


The scientific workforce has long lacked diversity, which in turn discourages Black people from pursuing such careers. Causes include a dearth of mentors and role models, preconceived notions that science is exclusive to white males, and subpar STEM education. Across race, gender, class, ability, and all other dimensions that inform how an individual navigates the world, from the familial to the global level, seeing role models who resemble you impacts what you strive for and believe possible. As Marian Wright Edelman stated, "You can't be what you can't see"—a truth with ever-increasing resonance since the U.S. is projected to be minority-white by 2045.

Keep Reading Keep Reading
Garance Choko and Aaron Mertz
Garance Choko started her career as a concert pianist at a very young age. Later, when she moved to the United States to continue her performance studies, she pursued her passion for public administration and innovation. She earned her Masters of Public Administration from Cornell University. Garance has launched innovation firms and designed and implemented physical spaces, national and local health care systems, nationwide public administration processes, and labor policies for institutions, corporations, and governments in North America, Europe, Africa, and the Caribbean. - - - Aaron F. Mertz, Ph.D., is a biophysicist, science advocate, and the founding Director of the Aspen Institute Science & Society Program, launched in 2019 to help foster a diverse scientific workforce whose contributions extend beyond the laboratory and to generate greater public appreciation for science as a vital tool to address global challenges. He completed postdoctoral training in cell biology at Rockefeller University, a doctorate in physics at Yale University, a master’s degree in the history of science at the University of Oxford as a Rhodes Scholar, and a bachelor’s degree in physics at Washington University in St. Louis.
“Deep Fake” Video Technology Is Advancing Faster Than Our Policies Can Keep Up

Artificial avatars for hire and sophisticated video manipulation carry profound implications for society.

Image by Rostyslav Savchyn on Unsplash

This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.

Alethea.ai sports a grid of faces smiling, blinking and looking about. Some are beautiful, some are oddly familiar, but all share one thing in common—they are fake.

Alethea creates "synthetic media"— including digital faces customers can license saying anything they choose with any voice they choose. Companies can hire these photorealistic avatars to appear in explainer videos, advertisements, multimedia projects or any other applications they might dream up without running auditions or paying talent agents or actor fees. Licenses begin at a mere $99. Companies may also license digital avatars of real celebrities or hire mashups created from real celebrities including "Don Exotic" (a mashup of Donald Trump and Joe Exotic) or "Baby Obama" (a large-eared toddler that looks remarkably similar to a former U.S. President).

Naturally, in the midst of the COVID pandemic, the appeal is understandable. Rather than flying to a remote location to film a beer commercial, an actor can simply license their avatar to do the work for them. The question is—where and when this tech will cross the line between legitimately licensed and authorized synthetic media to deep fakes—synthetic videos designed to deceive the public for financial and political gain.

Deep fakes are not new. From written quotes that are manipulated and taken out of context to audio quotes that are spliced together to mean something other than originally intended, misrepresentation has been around for centuries. What is new is the technology that allows this sort of seamless and sophisticated deception to be brought to the world of video.

Keep Reading Keep Reading
Jeanette DePatie
Jeanette DePatie describes herself as a professional “techsplainer”--taking complicated technologies and technological concepts and breaking them down into everyday language that everyone can understand. She has shared her entertaining and educational views on technology trends with companies like, McDonalds, Reynolds, Meredith, Better Homes and Gardens, Facebook and 20th Century Fox. She also proudly boasts that she once raised several million dollars in venture capital for a technology company with a presentation featuring two pieces of PVC pipe, a plastic funnel and a rubber chicken. She has been hired to describe technology by a host of Fortune 500 companies including Adobe, Apple, Intel, Microsoft, Monsanto, NTT Electronics, Panasonic, Pulitzer Samsung and Sony. She has spoken at CES, NAB, SMPTE CEATECH The Lean Startup Conference and a variety of Colleges and Universities.