Award-Winning Scientists Offer Advice to President Biden
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
We invited Nobel Prize, National Medal of Science, and Breakthrough Prize Laureates working in America to offer advice to the next President on how to prioritize science and medicine in the next four years. Almost universally, these 28 letters underscore the importance of government support for basic or fundamental research to fuel long-term solutions to challenges like infectious diseases, climate change, and environmental preservation.
Many of these scientists are immigrants to the United States and emphasize how they moved to this country for its educational and scientific opportunities, which recently have been threatened by changes in visa policies for students and researchers from overseas. Many respondents emphasize the importance of training opportunities for scientists from diverse backgrounds to ensure that America can continue to have one of the strongest, most creative scientific workforces in the world.
Peter Agre, M.D.
2003 Nobel Laureate in Chemistry
David Baker, Ph.D.
2021 Breakthrough Prize in Life Sciences Laureate
Cori Bargmann, Ph.D.
2013 Breakthrough Prize in Life Sciences Laureate
Jacqueline K. Barton, Ph.D.
2010 National Medal of Science Laureate
Barry Barish, Ph.D.
2017 Nobel Laureate in Physics
May Berenbaum, Ph.D.
2012 National Medal of Science Laureate
Martin Chalfie, Ph.D.
2008 Nobel Laureate in Chemistry
Joanne Chory, Ph.D.
2018 Breakthrough Prize in Life Sciences Laureate
Nina Fedoroff, Ph.D.
2006 National Medal of Science Laureate
Andrew Z. Fire, Ph.D.
2006 Nobel Laureate for Physiology or Medicine
Joanna S. Fowler, Ph.D.
2008 National Medal of Science Laureate
Jeffrey Friedman, M.D., Ph.D.
2020 Breakthrough Prize in Life Sciences Laureate
Jerome I. Friedman, Ph.D.
1990 Nobel Laureate in Physics
Elaine Fuchs, Ph.D.
2008 National Medal of Science Laureate
H. Robert Horvitz, Ph.D.
2002 Nobel Laureate in Physiology or Medicine
David Julius, Ph.D.
2020 Breakthrough Prize in Life Sciences Laureate
William G. Kaelin, Jr., M.D.
2019 Nobel Laureate in Physiology or Medicine
Judith P. Klinman, Ph.D.
2012 National Medal of Science Laureate
J. Michael Kosterlitz, Ph.D.
2016 Nobel Laureate in Physics
Adrian R. Krainer, Ph.D.
2019 Breakthrough Prize in Life Sciences Laureate
John C. Mather, Ph.D.
2006 Nobel Laureate in Physics
Geraldine Richmond, Ph.D.
2013 National Medal of Science Laureate
Adam Riess, Ph.D.
2011 Nobel Laureate in Physics
Randy W. Schekman, Ph.D.
2013 Nobel Laureate in Physiology or Medicine
George F. Smoot, Ph.D.
2006 Nobel Laureate in Physics
Thomas C. Südhof, M.D.
2013 Nobel Laureate for Physiology or Medicine
Warren M. Washington, Ph.D.
2009 National Medal of Science Laureate
Carl Wieman, Ph.D.
2001 Nobel Laureate in Physics
Dear Mr. President:
- Bloomberg Distinguished Professor and Director
- Johns Hopkins Malaria Research Institute
- 2003 Nobel Laureate in Chemistry
Peter Agre, M.D.
2003 Nobel Laureate in Chemistry
David Baker, Ph.D.
- Henrietta and Aubrey Davis Endowed Professor in Biochemistry
- University of Washington
- Investigator, Howard Hughes Medical Institute
- 2021 Breakthrough Prize in Life Sciences Laureate
I encourage you most strongly to ramp up support for basic science research in the U.S.! Discoveries can have impact far beyond the original questions being investigated, as highlighted by the recent Nobel prizes for CRISPR/Cas9. In my own research area, investigation of the fundamental principles of protein folding led to our ability to use computers to rapidly design promising vaccine, therapeutic, and diagnostic candidates in the midst of the pandemic. I also encourage you to support work on general pandemic preparedness, as with increasing population density, new pathogen outbreaks are likely to continue, and having effective countermeasures in place would greatly reduce human suffering and economic damage.
- - - - - - - - -
Cori Bargmann, Ph.D.
- Torsten W. Wiesel Professor
- Rockefeller University
- Head of Science, Chan Zuckerberg Initiative
- 2013 Breakthrough Prize in Life Sciences Laureate
Find all the pathogens!
To prevent and manage infectious disease, the next administration should deploy the power of large-scale molecular analysis to build a new, shared infrastructure for public health.
Currently, we identify infectious agents—viruses, bacteria, parasites, fungi—one by one at the local level. Is norovirus causing gastrointestinal distress in preschool children? Does a hospital harbor antibiotic-resistant bacteria like MRSA? Is a nursing home incubating Candida auris, a fungal superbug? We shouldn't be asking these questions one at a time. Instead, deploying large-scale molecular analysis would allow an integrated public health system to monitor all infectious diseases in real time and share the data nationwide.
First, provide DNA sequencing capacity for all local and state public health systems. Rapid, inexpensive sequencing of infectious agents should be routine whenever an outbreak occurs in a workplace, hospital, school, or prison. It can be used to track spread between people, find contaminated environments, and identify sites where a swift intervention is needed. Routine sequencing of infectious agents enables a quick, effective, and targeted public health response.
Second, use molecular methods like PCR and sequencing to track disease-causing viruses, bacteria, parasites, or fungi nationwide. In a science-informed world, we should know exactly what's making us sick. This is not primarily a health-care issue: most of the time putting a name on the organism won't change treatment. It's a public health mission: to identify dangerous infectious agents early, while there's time to act. Most of the time a respiratory infection (for example) will harbor a common rhinovirus or influenza virus, but sometimes those will not be present. In those cases, the advanced DNA sequencing method called metagenomics can identify unexpected and even previously unknown organisms, like SARS-CoV-2 in 2019. By monitoring all infectious agents systematically, we can be aware of their prevalence, spread, and virulence, and we can be prepared before the next pandemic occurs.
Finally, we need a national public health data infrastructure to share all of this information—the sequence of the infectious agent, the location at which it was found, and the disease that it caused. A common, shared data system will let infectious disease experts find and stop the next outbreak that endangers us all.
- - - - - - - - -
Jacqueline K. Barton, Ph.D.
- John G. Kirkwood and Arthur A. Noyes Professor of Chemistry
- California Institute of Technology
- 2010 National Medal of Science Laureate
A critically important resource in America today is our scientific enterprise. We bring together the best and brightest and create new technologies, new medicines, new ways of living. Our scientific enterprise is critical to the health and growth of our economy, whether considering our energy industry, biotechnology, pharma, or computer technologies. And as we consider the great global challenges before us, climate change and global health, here, too, science holds the answers.
For more than fifty years, the U.S. has been the global center of scientific excellence. Our universities have provided the best in the world for research and exploration. And in contrast to universities elsewhere, our universities provide a structure that nurtures change. Assistant professors can start up their own labs, raise funds to support their new experiments, and discover quickly new ideas as to how the world works. Our industrial enterprise supports this same entrepreneurial approach to explore and develop. Small start-ups are incubators for transformative technologies. Moreover, collaboration, across disciplines and between industry and academe, allows a mixing of new ideas. And with federal support, both academic and industrial research can quickly yield new technologies and economic growth.
Science in the U.S. is therefore a unique and critical strength. Yet science is under attack. We have been able to attract the very best from across the globe to train here, to learn from the best and spread the word. This cross fertilization will not occur going forward if we squelch immigration and if we interfere with international collaboration. Moreover, research in our universities requires federal funding. Without support for basic research, where we are just learning the questions, let alone the answers, we can only make progress incrementally, and we cannot discover and develop new, transformative technologies.
U.S. science is a jewel. It needs your support.
- - - - - - - - -
Barry Barish, Ph.D.
- Linde Professor of Physics, Emeritus
- California Institute of Technology
- 2017 Nobel Laureate in Physics
I am writing to stress to the new administration that you will soon be faced with crucial policy issues that require good scientific input in formulating policy. At the top of list must be providing the leadership that will bring us out of the pandemic. In that regard, formulating consistent policy on social distancing, testing and tracing, and vaccines and distribution are all complex problems that need the best scientific inputs and advice.
A second issue of great importance to the world is nuclear proliferation. We must make viable agreements with other countries having nuclear capability, as well as agreements for Iran or other countries that could develop capability. Renewing the U.S. nuclear stockpile is a very complex domestic issue that again needs the best scientific guidance.
A third crucial issue is climate change. We have had unprecedented heat, melting ice caps, forest fires, polluted cities, etc. in the recent past. We must develop forward-looking and workable policy, working with the rest of the world and using the best advice of scientists.
Of course, there will be other major issues, where the advice of scientists will be crucial to decision making and formulating policies. The U.S. is a wonderful place to be a scientist and to do science. Please take advantage of our skills and knowledge as you face the challenges of the coming years.
- - - - - - - - -
May Berenbaum, Ph.D.
- Professor and Head of Entomology
- University of Illinois at Urbana–Champaign
- 2012 National Medal of Science Laureate
Congratulations on your election, during a moment in history when the health and well-being not only of the human population but also the biodiversity of the planet will almost certainly be affected by decisions you make while you're in office. For this reason, please depend on the knowledge that the scientific community can offer to inform your decision-making. In 1863, your predecessor Abraham Lincoln, recognizing the need for independent, objective advice for a nation embroiled in a civil war, created the National Academy of Sciences as a mechanism to obtain such advice. Scientists answered the call, advising the federal government on many scientific and technological issues, including consistency across weights and measures and accuracy of magnetic compass readings on iron-hulled warships. For over 150 years, the federal government has benefited from making decisions based on the best independent, objective scientific evidence available from a rapidly expanding community of scientists. Keep in mind, though, that scientific research comprises not just the knowledge produced, but also the process through which it's obtained, a process designed to be iterative, self-correcting, and objective. It's true that scientific views can change, sometimes rapidly—but such change is intrinsic to the process, as long as changes come not from whimsy or political stratagems, but from the collective accumulation of well-designed, unbiased, repeatable studies, particularly when new fields or unprecedented problems arise. The utility of relying on scientific advice in policy-making has been abundantly demonstrated, as have the often tragic consequences of rejecting a strong scientific consensus to suit political agendas (think of the deaths of millions resulting from the Soviet-era implementation of Trofim Lysenko's politically tinged agronomic theories). Like it or not, your legacy will depend on the extent to which you embrace both the process and the products of the scientific enterprise.
- - - - - - - - -
Martin Chalfie, Ph.D.
- University Professor of Biological Sciences
- Columbia University
- 2008 Nobel Laureate in Chemistry
I have never been prouder of the scientific enterprise than during the COVID-19 pandemic. Scientists, healthcare professionals, and others are devoting their knowledge and skills and often redirecting their research to solve the problems of SARS-CoV-2 and the destruction it is causing. These scientific efforts would not have been possible without our previous understanding of basic biological processes. This understanding is what allows people to sequence genomes, determine protein structures, develop novel ways of detecting and interfering with the virus, and understand how viruses take over cells and how the body responds to infection. As part of preparedness for the next health crisis, we must continue to build our scientific knowledge, because we do not know what we will need to know.
The astonishing response of the scientific community to this pandemic shows how much science can contribute and what it can accomplish. The question for the future is: how can we maintain our momentum? We can do so, first, by increasing the support for both fundamental and applied research, and we need to take a broad view of what to support. I received my Nobel Prize for my development of a method to watch cells work that was based on a jellyfish protein. Tens of thousands of research projects have utilized this protein to expand our understanding of basic biology and to study human disease. Second, we need to put more resources into educating future scientists. We must support and expand STEM programs in elementary and high schools, research opportunities for college students, and training programs for graduate students and postdoctoral researchers. And we must provide opportunities to increase diversity within the sciences, including encouraging and supporting the entry of underrepresented minorities and first-generation, low-income college students into careers in the sciences. Third, we should ensure that governmental decisions and administrative policies are based on strong scientific consensus and are not subjected to anti-science political pressure. We have a long tradition of the sciences and scientists helping our country. Indeed, in 1863 Abraham Lincoln helped found the U.S. National Academy of Sciences specifically to provide unbiased advice to the nation. To this day, the National Academies of Sciences, Engineering, and Medicine continue to do so. Their advice and that of the many conscientious and concerned scientists in our country should be heeded if we want to preserve our environment, improve the health of our population, and continue to reap the benefits that Science provides.
Finally, Mr. President, you have the important role of encouraging scientific excellence and recognizing scientific accomplishments, to spur others to make the discoveries so necessary for our future. For many years, the U.S. winners of the Nobel Prize have been invited to the White House and met with the President before going on to Sweden. Regrettably, these events have not occurred in the last four years. I encourage you to reinstate this very welcomed tradition. These meetings at the White House are the one time that the country, as represented by the President, thanks the Laureates for their achievements.
- - - - - - - - -
Joanne Chory, Ph.D.
- Professor and Director of the Plant Molecular and Cellular Biology Laboratory
- Howard H. and Maryam R. Newman Chair in Plant Biology
- Salk Institute for Biological Studies
- Investigator, Howard Hughes Medical Institute
- 2018 Breakthrough Prize in Life Sciences Laureate
Humanity is facing unprecedented challenges of a simultaneous and urgent nature rarely before seen in our history. A pandemic infection has brought the world's economy to its knees. Authoritarian assaults on democracy are increasing mistrust in governments and institutions. Global climate change is destabilizing lives and livelihoods. Now, more than ever, Americans and our allies are looking to the U.S. to lead the world through these monumental challenges.
Science and scholarship are the most powerful tools by which we may understand these challenges and how best to address them. The pursuit of truth, which is the bedrock of science and the linchpin of functioning democracy, must be our top priority for the next four years.
I urge you to commit to making evidence-based policy decisions, and to making science and foundational research your compass to help guide the world to a healthier, more stable future. It is not hyperbole to say humanity is at a crossroads, and that we face existential threats in the form of climate change and distrust of science.
Jonas Salk, who developed the first polio vaccine in response to the polio pandemics of the early 20th century before going on to found the Salk Institute for Biological Studies, once said, "Our greatest responsibility is to be good ancestors."
We owe future generations a healthy, habitable world.
- - - - - - - - -
Nina Fedoroff, Ph.D.
- Emeritus Evan Pugh Professor, Pennsylvania State University
- Senior Science Advisor, OFW Law
- 2006 National Medal of Science Laureate
I wish to draw your attention to a thorny issue whose impact on America will steadily grow in coming years as climate warming becomes ever more destructive to our food supply. I speak of the growing gap between what science can do to help agriculture and what's actually being done for farmers.
Spectacular advances in genetic knowledge and methods over the past half century have made it possible to adapt agriculture to a warming climate even while increasing agriculture's productivity and sustainability and reducing its environmental footprint.
But over the same half-century, public opinion has been systematically turned against the use of such modern methods of genetic modification (GM) by the organic food industry and public interest groups who have successfully vilified GM and created fear to increase their market share and raise money. A majority of consumers is now convinced that GM foods are bad or dangerous.
But the science says that GM foods are entirely safe for consumption by both people and animals. GM crops have now been grown commercially for a quarter of a century, boosting farmer incomes around the world, even while reducing pesticide use and greenhouse gas emissions. Unfortunately, current regulatory policy has all but precluded the rapid development of GM animals.
It is essential that the upcoming administration listen to the science and direct efforts toward relaxing excess regulatory constraints on GM. But more than that, it is essential that the government boldly promote GM approaches in agriculture to overcome the widespread disinformation promulgated by anti-GM groups. Public acceptance of GM foods is critical to their success in the marketplace.
Government investment can encourage private and public sector scientists to develop badly needed agricultural organisms biologically protected from the pathogens, pests, and stresses of the warming climate. But unequivocal government support of GM foods will be crucial to unleashing the scale of investment needed for farmers to stay ahead of the warming climate's growing downward pressure on their ability to feed the nation.
- - - - - - - - -
Andrew Z. Fire, Ph.D.
- Professor of Pathology and Genetics
- Stanford University School of Medicine
- 2006 Nobel Laureate for Physiology or Medicine
The next President of the United States can make the world a better place
But not alone. He or she will need to
Communicate with Americans
To know what is working in America
To know what needs to be fixed
To convey what people can do for their communities, their country, and their world
Communicate with scientists and experts
To understand what we have learned and what we can do
To understand the uncertainties in all science and technology
To understand what resources are needed to find and implement solutions
Engage beyond our borders
Because we share a fragile planet
The U.S. scientific community can make the world a better place
But not alone. We will need to
Listen to communities across the US to know where knowledge and solutions are needed.
Carefully and clearly convey facts and consequences in areas where we know.
Debate and unashamedly convey uncertainties and areas where we don't know.
Continue to engage with other scientists here and elsewhere to develop new approaches and understanding
Train a new generation of scientists to address current and future challenges
The American People can make the world a better place
But not alone. We will need to
Convey to leaders and scientists what is working and what needs to be fixed.
Educate ourselves in a broad range of science to make rational decisions
Participate in dialog toward designing solutions that improve life for everyone
Work together and listen with each other and with the world.
- - - - - - - - -
Joanna S. Fowler, Ph.D.
- Senior Scientist Emeritus
- Brookhaven National Laboratory
- 2008 National Medal of Science Laureate
Throughout our history, the United States has inspired and attracted students and scientists from around the world. They are typically motivated by the freedom to do creative work in our universities and research institutions unfettered by political interference. Immigrant scientists now make up 25% of our science and technology workforce and have contributed enormously to our economic growth and to the health and well-being of all Americans. They have also enhanced our prestige internationally, with immigrants to the United States winning 35% of the Nobel Prizes awarded to Americans in physics, chemistry, and medicine since 1901 and pointing to America's vision in embracing talent from around the world.
Unfortunately, recent anti-immigrant rhetoric and policies such as the travel ban and a recently issued proclamation that temporarily restricts many types of legal immigration (including students and scientists) have led many international students and scientists to reconsider building their careers in the United States.
It is urgent that our next President reassures the international community and our international students and scientists that (1) the United States will be an unwavering voice for bringing the power of science to the solution of global problems including the COVID-19 pandemic and climate change; (2) our policies and actions will be informed by science; and (3) international students and scientists who choose to come to the United States (as well as those already in our country) will be welcome and protected from political interference irrespective of their race or their country of origin.
- - - - - - - - -
Jeffrey Friedman, M.D., Ph.D.
- Marilyn M. Simpson Professor
- Rockefeller University
- 2020 Breakthrough Prize in Life Sciences Laureate
The COVID-19 pandemic has reaffirmed the critical role that science plays in peoples' lives. Stunning advances over the last 75 years made it possible to identify the infectious agent, develop robust new diagnostics, implement increasingly effective treatments (with more to come), and develop and test new vaccines all with startling rapidity. Compare this to the response to the Spanish Flu epidemic a century ago when it took years before the viral etiology was even confirmed. This remarkable progress provides a powerful reminder of why generous funding of science is crucial.
It is important to remember, however, that this stunning progress was made possible not just by scientists applying an ever-expanding body of knowledge to the current crisis but also by the innumerable scientists who laid the foundation that underpins that knowledge. This includes the scientists who, by following their own curiosity, showed that genes were made of DNA, defined how DNA after being copied into RNA provides the blueprint for making proteins in cells, and discovered that the genes in some viruses such as COVID are made of RNA rather than DNA. Still other scientists developed methods for isolating and studying genes and their functions in the laboratory.
In many cases, these enabling technologies depended on advances that had no obvious applications at the time, such as the discovery of restriction enzymes, proteins which cut DNA in specific places. This research was motivated not by practical considerations but by the curiosity of Nobel Prize winners Dan Nathans and Ham Smith who wanted to understand how bacteria protect themselves from the viruses (known as bacteriophage) that infect them. It was this advance, and many others like it, that helped to usher in the era of modern science that empowered the remarkable response to the current pandemic. So as we make the case to increase the funding of science, we need to ensure that the investments include not only the application of our current knowledge to our immediate needs, but also include investments in the curiosity-driven research that makes those applications possible.
- - - - - - - - -
Jerome I. Friedman, Ph.D.
- Institute Professor and Professor of Physics, Emeritus
- Massachusetts Institute of Technology
- 1990 Nobel Laureate in Physics
Investment in science and technology is an absolute necessity to develop the innovations that are needed to mitigate and reverse damage to the environment, protect our health, ensure future improvements in our standard of living, and stimulate economic growth. Applied research and invention play extremely important roles in innovation, but it should be emphasized that basic research has in general produced the major conceptual breakthroughs that have resulted in radically new technologies. For example, at a time in the past, electricity and magnetism were just laboratory curiosities. Now they are integral to the technologies of modern society. The study of the structure of the atom has led to the digital world in which we now live, and understanding the structure of DNA has revolutionized medicine. Such breakthroughs are needed to address and reduce the serious problems that afflict our world. To achieve our goals, we need to expand our base of fundamental knowledge to produce the new technologies that we desperately need. This will require a substantial increase in investment by the Federal Government in all types of research, and, because industry does not support basic research as it did in the past, the funding of basic research is especially dependent on the Federal Government. Funding for research is not a cost; it is an investment that will pay back rich dividends in the future, as it has done in the past.
- - - - - - - - -
Elaine Fuchs, Ph.D.
- Professor of Mammalian Cell Biology and Development
- Rockefeller University
- Investigator, Howard Hughes Medical Institute
- 2008 National Medal of Science Laureate
The COVID-19 pandemic exemplifies why our nation needs an effective, rapid response team of scientific experts to help contain the spread of infectious pathogens. In times of a pandemic, America must also mobilize government funds to enable another cadre of scientists to identify ways to disarm the microbes. However, such efforts will only succeed when the existing basic science foundation is strong. Our nation has long been the world's leader in biomedical research, and our accrued knowledge of viruses, their ability to infect epithelial cells, and the inflammatory responses that they elicit, gave our scientists the jumpstart necessary to rapidly develop vaccines and neutralizing antibodies against the SARS-CoV2 virus. With the ever-increasing barrage of unexpected health challenges that our changing climate imposes upon us, America must continue to strengthen and broaden our basic science foundation and to provide the training and support to prepare the next generations of scientists to participate in this endeavor.
As a basic scientist working at the interface between science and medicine, I've witnessed numerous examples in my career that illustrate how important basic science is for advancing new and improved treatments for human conditions. For example, mutations in a nuclear modification first described in algae causes a lethal brain cancer in children. Additionally, current cancer treatments often make patients sick because they harm both healthy and cancerous tissue, and the cancers often relapse after treatment. Determining which cancer cells are responsible for relapse and how they differ from the healthy stem cells that fuel normal tissue growth and repair, could lead to blueprints for designing therapeutics that effectively kill these resilient cancerous cells without harming the normal tissue.
Our government's long-standing support for basic science makes it easier than ever before to solve the scientific puzzles needed to disarm threats to our health and fitness. However, our bodies are continually exposed to new stresses, new microbes, new pollution. By keeping a high pace of basic science and discovery, and inspiring and training the best and brightest young minds from diverse backgrounds, we will stand the best chance of being prepared for whatever nature has in store for us in the future.
- - - - - - - - -
H. Robert Horvitz, Ph.D.
- David H. Koch Professor in Biology
- Massachusetts Institute of Technology
- Investigator, Howard Hughes Medical Institute
- 2002 Nobel Laureate in Physiology or Medicine
While resoundingly validating the investment in biomedical research that has been made over the past decades, the response of our nation to the COVID-19 pandemic has also cast a harsh light on us, including on aspects of our national scientific and biomedical enterprise, revealing gaps in understanding as well as in the efficient application and deployment of available knowledge and technology. As we enter a new Presidential term, American science needs to draw on its COVID-19 experiences, both the innovative and the painful, to face a changing world. Scientists have much to learn in the coming months from COVID-19 about emerging health challenges, about safeguarding our nation's physical health, and about sustaining American leadership in biomedical research. By leading our country over the next four years, you will have the opportunity to impact the health and safety of generations of Americans.
Past federal investment in biomedical research has been extraordinarily productive. Largely through research conducted or supported by the National Institutes of Health (NIH), the United States has led the way in pioneering crucial diagnostic procedures, novel treatments, life-changing cures, and innovative prevention strategies for a broad variety of disorders, including cancer and heart disease. This core of evidence-based science powered our response to the pandemic as NIH-supported scientists unraveled the basic biology of the SARS-CoV2 virus, drove unprecedentedly rapid diagnostic and vaccine development, and sharpened treatment protocols. Maintaining—and bolstering—that core is critical to our national health, economy, and security.
The NIH must now reaffirm its commitment to fundamental and bold biomedical research. That is why, along with 13 of my colleagues from across the nation, I am preparing a report that seeks to advise the next Administration about how best to capitalize on the enormous promise of 21st-century biology. Our NIH Vision and Pathways report will provide a perspective on and vision for biomedical research and health, as well as describe specific proposed changes that will focus and strengthen NIH to achieve that vision. Our suggestions encompass four areas concerning NIH structure and operations:
- Research: Driving Innovation and Discovery
- Training: Preparing the Next Generation
- Administration and Operations: Maximizing Opportunity
- Appointment of the NIH Director
Your administration can seize this opportunity to shape the NIH, a crown jewel of the federal government, in ways that will make it more impactful and efficient in improving the health and well-being of Americans and will ensure the leadership position of our country in the field of biomedicine for decades to come.
- - - - - - - - -
David Julius, Ph.D.
- Professor and Chair of Physiology
- University of California, San Francisco
- 2020 Breakthrough Prize in Life Sciences Laureate
A couple of Thanksgiving dinners ago, I got into a discussion with a relative who disparaged climate change as a hoax. I pointed out that he was the same person who prided our country for its legendary technical and scientific accomplishments, such as building the Panama Canal, landing on the moon, or conquering polio. Honestly, I was amazed at this contradiction: how can someone believe so fervently in the idea of "American Exceptionalism" yet now devalue and discount the advice of our scientific and engineering community? Can we really have it both ways?
Perhaps more than anything else, the next President of the United States must take on the goal of repairing and reestablishing respect for education, knowledge, professional expertise, and fact-based decision making. Otherwise, the foundation of our nation's legendary scientific and engineering excellence shall crumble. Scientists and engineers hail from all corners of our country and world—urban and rural, wealthy and poor, etc. What unites us is a passion for curiosity, discovery, creativity, and problem solving. Our next leader must challenge the canard that scientists constitute a class of intellectual and cultural elites separate from the rest of society.
With regard to biomedical research, I remain a believer in the power of basic, curiosity-driven research. Time and again, we find that transformational discoveries in science and medicine come from unexpected or unanticipated avenues of inquiry (think CRISPR gene-editing technology, discovery of innate immune pathways in flies, or snake venoms as the inspiration for anti-hypertensive drugs). Certainly there are moments—such as the current COVID-19 pandemic—to mobilize goal-directed efforts, but we must not forsake bedrock basic, curiosity-driven research programs, which will continue to yield discoveries that move biomedical research and technology forward so we can tackle known diseases or the next unforeseen global health challenge.
- - - - - - - - -
William G. Kaelin, Jr., M.D.
- Sidney Farber Professor of Medicine
- Dana-Farber Cancer Institute and Brigham and Women's Hospital
- Harvard Medical School
- Investigator, Howard Hughes Medical Institute
- 2019 Nobel Laureate in Physiology or Medicine
Winning the Nobel Prize last year has caused me to reflect on some of the ways government policies influenced my career. I was born in 1957, about six weeks after the Sputnik launch. Science and engineering were celebrated in the United States during my childhood, partly because of the ensuing space race and the Cold War. Bipartisan support for science education and scientific research was like mom and apple pie for most of my early years. I had the opportunity in 1974 to attend a National Science Foundation Student Science Training Program in Computers and Mathematics that absolutely transformed me as a student because it was the first time I was surrounded by students who were almost uniformly smarter than I was and the first time I encountered a curriculum that I found truly challenging and interesting. During my clinical training to become a doctor, I routinely encountered brilliant physician-scientists, many of whom had trained at the National Institutes of Health (NIH) during the Vietnam War era (the so-called "Yellow Berets"). When I pivoted from clinical medicine to laboratory research in the 1980s, my development was supported by NIH training and research grants. In 1994, the NIH budget was doubled with bipartisan support, just as my funding was growing perilous. It enabled me to pursue the work that led to my Nobel Prize.
Sadly, federal support for science has been flat for many years now. What is worse, some politicians, to accomplish their political agendas, use language that disparages science and scientists and act as though knowledge and truth are subjective. Adding further insult, the economic disruptions from COVID-19 are likely to decrease the hiring of newly minted scientists by academia. We run the risk of losing the next generation of researchers if we don't immediately take steps to convince young people that seeking truth and knowledge is a noble endeavor and that their careers will be valued and supported. I would pay particular attention to the support of basic, fundamental research. A formula that served us well dating back to the middle of the last century was to have the federal government support basic science and to have the private sector decide when the knowledge it generated was ripe for application. Basic science is the most vulnerable part of the entire research enterprise, partly because its timelines and deliverables are often unknowable (and hence shunned by investors), and yet it is basic science that over and over leads to the truly transformative discoveries that change the way we think about the world and improve our lives. It is also the formula that explains why Americans have won a disproportionate number of Nobel Prizes over the last century. This formula has not escaped the notice of some of our competitors. It would be tragic if we ourselves forgot it.
- - - - - - - - -
Judith P. Klinman, Ph.D.
- Professor of the Graduate School and Chancellor's Professor of Chemistry
- University of California, Berkeley
- 2012 National Medal of Science Laureate
During the 20th and early 21st centuries, American science experienced a "Golden Age." While this may have been taken for granted by many of us in the scientific community, it is impossible to ignore its decline during the last four years. The neglect and disengagement of government support for key agencies, and science in general, have been devastating on many levels, the most immediate being the excessive and unnecessary number of deaths from COVID-19. The current pandemic is unlikely to be a standalone event and is connected to the ongoing loss of natural habitats within the larger "Climate Change" crisis.
The divestment of government from knowledge-based engagement in global warming has become both immoral and irresponsible, and the time for remediation is rapidly running out. I believe it is imperative that the next administration work quickly on multiple fronts that include a complete and rapid refocus on sustainable energy, a continuing investment in research toward carbon capture, and the pursuit of best practices that will support a new infrastructure that enables the necessary behavioral changes of all citizens. Unless we work quickly and effectively, the younger generation that includes our children (both biological and academic) are, I fear, inheriting an uninhabitable Planet Earth.
- - - - - - - - -
J. Michael Kosterlitz, Ph.D.
- Harrison E. Farnsworth Professor of Physics
- Brown University
- 2016 Nobel Laureate in Physics
There are two parts to the development of a device like the cell phone. First, you need the theoretical scientists who pursue various avenues of knowledge out of curiosity. Then, you need the practical scientists who today are called engineers or, in medicine, doctors. They take theoretical knowledge developed by theorists, play with it, and, with a lot of luck, develop some useful device based on the existing theoretical understanding. It is important to realize that both parts are needed. The basic theoretical understanding comes first followed by the development of some practical device which is not possible without the underlying theory. Both types of science are necessary for a final outcome. To an average person, who neither knows nor cares about science, only the engineering part seems important because the connection is more immediate. However, for the successful development of some useful device, both are usually equally important. Without the basic knowledge developed by the scientist doing apparently useless curiosity-driven research, the basic understanding for the practical development would not be there, so the device would not be built. Both the theoretical and the practical skills are needed and both should be adequately funded. One cannot exist without the other, and results from one feed into the other.
For the next four years of your presidency, one of the most important considerations is the health of the population. As we have all seen during the coronavirus pandemic, the whole country suffers when the population does not have adequate access to effective health care. This should be central to your presidency because the economy of the country depends critically on a healthy population. The key to a vibrant economy is adequate government funding of the whole scientific effort in as many branches as possible. Of course, there will be some inevitable wastage but, to keep America competitive, funding by government and supplemented by private agencies of all the real sciences is vital. I do not have the conceit to make specific suggestions about which branch of science or engineering is more important than another. They all deserve some funding until such time that they are proved to be useless or wrong like the old discredited phlogiston theory of burning.
- - - - - - - - -
Adrian R. Krainer, Ph.D.
- St. Giles Foundation Professor
- Cold Spring Harbor Laboratory
- 2019 Breakthrough Prize in Life Sciences Laureate
Congratulations on your election. The next four years will pose major challenges, but we have the ability to address them effectively. I arrived in this country as a foreign student four decades ago, to begin my college education. I chose to study in the U.S. because I knew it was the top place in the world for biomedical research, and I was fortunate to have this opportunity. After graduate school, I accepted a job offer in academic research, I became a resident and then a citizen, and I never looked back. Together with my trainees—who came from the U.S. and 20 other countries—and our collaborators, we succeeded in developing an effective treatment for a devastating genetic disease, helping thousands of patients around the world live longer and more productive lives, and creating many jobs in the process. I know from this experience that government funding of basic research, e.g., through the NIH and NSF, plays an incredibly important role. This public investment ultimately improves the lives for all humanity, and along the way it results in job creation and attracts top talent from the U.S. and abroad. Other countries, notably China, have emulated us by making massive investments in education, science, technology, and infrastructure, with increasingly impressive results. To remain at the forefront, we must increase or at least sustain the pace of public investment in these key areas. Our institutions of higher learning continue to be a magnet for top talent from around the world. Some of these visitors eventually choose to stay, and we should welcome them; others will return home but maintain connections with, and good will toward, America. Science is a global endeavor, and challenges such as human diseases, pandemics, and climate change know no international boundaries. The U.S. must continue to lead the world in the search for effective solutions to these vexing problems.
- - - - - - - - -
John C. Mather, Ph.D.
- 2006 Nobel Laureate in Physics
We need to upgrade the EPA into the National Environmental Defense Agency (NEDA) with a charter to protect all Americans as a matter of national security, equal in importance to the Department of Defense and the Department of Homeland Security. Failure to address climate change would be a worldwide and permanent catastrophe, so the NEDA would take all necessary actions including measurement, analysis, fundamental research, technology development and commercialization, disaster planning, infrastructure support for mitigation, and international leadership. Congress should support this work because it means jobs for millions of Americans, and taxpayers should support it because it preserves their wealth. The health and prosperity of Americans for the next four years, and on for at least the next thousand, depend now and always on noticing what's happening and responding accordingly. But we've been caught unprepared for multiple disasters, and more are coming. Some could be mitigated with planning and organization at all levels from international and federal to personal, and some need inventions and discoveries we don't yet have. Though the time scale is uncertain, the sea is rising every year, with no end in sight. When the sea rises six feet, over ten million Americans will lose their homes and land. When the tropics become unbearably hot, more millions will migrate to America. If a foreign power were taking our land, we would act. If a foreign power were setting the American West ablaze, we would act. If our farms were dying, we would act. Shall we not act? We need responsibility, authority, and a plan. It might sound impossible, but so were electricity, moon rockets, and the internet not long ago. We can do this, and you as President can make it happen.
- - - - - - - - -
The following insights, contributed by members of the Aspen Global Congress on Scientific Thinking & Action, offer local experts' best practices for communicating about a global health crisis with the public in nuanced and regionally specific ways.
Senegal
Is the messenger as important as the message? Pandemics such as COVID-19 and the flood of online misinformation underlie the critical need to elevate the voices of African science leaders. African communities have talented experts they can rely on to access reliable information based on facts, if only the right platforms are provided to them. Not only do we need to share the right information and understand our target audiences, we must pay close attention to those who deliver our messages, when planning any communication strategies.
Fara Ndiaye, Deputy Executive Director, Speak Up Africa
Brazil
The first lesson from the current pandemic for science communication in Brazil is that there is no such thing as redundancy. It doesn't matter how many times one says or explains something—about the importance of social distancing, or the uselessness of chloroquine—there is always someone you didn't reach the first time, and someone you reached but wasn't paying attention then. You have to repeat it, over and over again. Another lesson is that it actually works. Sometimes the onslaught of misinformation can make one think that the effort is futile. It isn't: if you listen carefully, you can find the results—even if only after a lot of repetition.
Natália Pasternak Taschner, President, Instituto Questão de Ciência (Question of Science Institute)
Carlos Orsi, Editor-in-Chief, Questão de Ciência (Question of Science) Magazine
Colombia
The pandemic has exposed the strengths and weaknesses of journalism, but it is also teaching, in real time, how to do good scientific journalism. In Colombia we have good results with the strengthening of our collaborative networks and working with colleagues from other countries and other media. We listen to science and give it a voice in the media. We are also looking at information from different angles. But we are left with challenges: journalists must be trained in scientific journalism, scientific journalism needs to be across all journalistic areas, and we need to learn to rigorously fact-check.
Ximena Serrano Gil, President, Asociación Colombiana de Periodismo Científico (Colombian Association of Science Journalists)
Ukraine
Ukraine started quarantine on March 25, 2020 when there were only 10 cases of COVID-19. And already on May 22 the quarantine was weakened and economic recovery began. Kyiv Mayor Vitali Klitschko's address "Don't wander the streets" worked well in the capital, the most populated city. We also managed to develop our own PCR tests within two weeks. I managed to provide comments on the origins of the new strain of coronavirus to the leaders of public opinion and it helped to prevent conspiracy theories and to stop the panic. Aspen Institute Kyiv organized a series of online events and activities to inform society about the pandemic, to help with medical supplies, and to assist the needy. In general, the COVID-19 pandemic exposed all the shortcomings and bottlenecks of the country's medical sphere. The positive outcome is that everybody learned about PCR and realized how important good science is for society.
Nataliya Shulga, CEO, Ukrainian Science Club
New Zealand
This pandemic has highlighted how a scientific issue connects every discipline and when those from seemingly different camps work collaboratively and innovatively, a powerful alchemy can result. I think New Zealand's response to COVID-19 has shown what is possible when good science and good communication come together. We have had extraordinary leadership in this country that not only invests in science, but invests equally in the public's understanding of it. NZ citizens were brought into the process of it every single day through effective storytelling across multiple platforms. Walls between science and society melted away, and no one had to question the reasons behind what we were being asked to do to protect ourselves and each other because the science was embedded in a crystal clear story. And at the heart of that story is the message to trust in science like your life depends on it—because it does.
Gianna Savoie, Director of Filmmaking, Center for Science Communication, University of Otago
Portugal
COMCEPT tries to engage with the public in person and via digital social networks. In the week before the lockdown we organized a public meeting, some style of "Skeptics in the Pub," about the new coronavirus. The speaker was the president of a medical association and presented to the public the best data available at the moment regarding SARS-CoV-2 and COVID-19. During the lockdown, we used social media to promote reliable information about the disease, shared official data from the Government, asked the public to participate in online academic studies, and debunked conspiracy theories.
João Lourenço Monteiro, Vice President, COMCEPT: Comunidade Céptica Portuguesa (Portuguese Skeptical Community)
Australia
Australia has … so far … come through the coronavirus pandemic without suffering the appalling figures seen elsewhere: Australia's death rate per million currently stands at 4, compared with 300 deaths per million in the U.S.A.; 542 in the UK; and a horrifying 800+ in Belgium. Australia is not alone in achieving such relatively low figures, but in Australia it does seem to be thanks to a fairly (but not perfect) early intervention to stop infections through border controls and lockdowns, supported by a largely cooperative public. While early communication efforts by governments were marked by contradictions and confusion, one success has been the national broadcaster, the Australian Broadcasting Corporation, in spreading factual information through a range of media platforms. In particular are the activities of Norman Swan, presenter of ABC Radio National's Health Report, who has become a key voice of coronavirus information. His daily CoronaCast podcast quickly became one of the most downloaded science podcasts around the world, and though presentations were not without dire predictions, his softly-spoken manner generally gave science communication a voice that seemed sincere and proved reliable.
Tim Mendham, Executive Officer, Australian Skeptics
Israel
There are two salient features of the corona-related fake news in Israel: they give the reader meaning and hope. I think that if we talk more about the interface between science and moral values, we might be able to fill in the needs currently filled with prophetic, pseudo-medical, and conspiracy messages. When communicating science, a curve is not just a curve; it is also a story about solidarity.
Ayelet Baram-Tsabari, Associate Professor,Faculty of Education in Science and Technology, Technion – Israel Institute of Technology
Nigeria
COVID-19 has exposed the need to diversify the approaches and languages used to communicate science. In Science Communication Hub Nigeria and African Science Literacy Network, our scientists and fellows are using local languages to debunk science misconceptions and disinformation about COVID-19 through written articles, myth busters, and weekly webinars streamed live on Facebook and YouTube. In addition to disseminating good science, this approach has made it easier for us to understand how local communities view science and scientists, which in turn enables us to deliver content appropriate to these communities.
Mahmoud Bukar Maina, Founder, Science Communication Hub Nigeria
Czech Republic
It is not a secret in the world of science communication that, for many, accepting the facts has little to do with facts themselves. This quiet truth has been brought out into the spotlight even more so now during the pandemic. Many of us received the lesson that we must communicate with the human first before we try communicating the science to them.
Claire Klingenberg, President, European Council of Skeptical Organizations (ECSO)
U.S.A. / Mexico
The pandemic has united science communicators more than ever. It has spurred many fruitful collaborations, such as the COVID-19 Virtual Forum organized by the Mexican Network of Science Journalists with all the science communication associations in Latin America and Spain. In Mexico and the U.S., we are all fighting misinformation while keeping up to date with the freshest science, policies, and society's response. This is the time to show why science journalism is important by stepping up to the plate.
Rodrigo Pérez Ortega, Founding Member, Mexican Network of Science Journalists
Switzerland
Switzerland has managed to flatten the curve substantially and avoid a collapse of the public health system. Now that the country is slowly opening up again, the public discourse increasingly revolves around the question of "what was all this fuss about, when nothing happened?!" We have a term for this frustrating phenomenon: Pandemic Paradox. The successful management of outbreaks can lead to a decrease in public trust in communicators based on the perception that they were overreacting. However, we are aware of it and its origins are well studied, which gives us an assortment of tools to combat it.
Angela Bearth, Research Scientist, Consumer Behavior, Department of Health Sciences and Technology, ETH Zürich
Cameroon
The pandemic has recalled the vital role of science communication in times of crisis. Africa in general and Cameroon in particular have been spared for the moment from the catastrophe so feared by the whole world. This stems from the good collaboration among media, decision makers, and researchers who have positively influenced the apprehension of the threats by the general public as well as their behavior, which is a determining factor for the efficiency of the response.
Stéphane Kenmoe, Scientist, Science communicator, and television personality
Canada
Science communication is always challenging but even more so in the COVID-19 era since so much about the disease is unknown. Because of my media presence and the mandate of our Office to "demystify science for the public," I am bombarded by questions from morning to night. Unfortunately, the answers almost always have to be qualified with "ifs," "buts," and "maybes," which is not very satisfying.
I think I can confidently say that self pleasuring will not reduce the chance of contracting COVID-19 as some bloggers claim, and I can also assure people that hanging laundry on a clothesline is safe and advise them that putting the newspaper in the oven to disinfect it is a bad idea. But when questions arise about handling mail or groceries, or the effectiveness of masks, the uncertainties creep in.
Then there is the issue of the numerous conspiracy theories ranging from Bill Gates's supposed plan to decimate the population to the disease being caused by 5G antennae. This puts us in a position of having to prove a negative, which is very difficult to do. My usual approach is to ask proponents questions about the number of conspirators that would have to be involved, their possible motives and the source of the information. Sometimes if you give them the rope they will hang themselves.
Joe Schwarcz, Director, Office for Science and Society, McGill University
India
The clamp downs, the lock downs,
the prayers were all tried
Lamps were lit, plates banged, and
flowers were showered from skies
Millions were spent, sugar pills were
dispensed, grandmas' soups concocted
Herbs were boiled and breathing taught
Alas nothing worked, they all came to
naught
Millions walked, hundreds died.
All nation builders migrating to home
villages
The rulers were deaf, the nation was
blind to one of the longest shut downs
of its kind!
But nothing worked, neither the herbs
nor the sugar pills or the urine of the
mother cow!
1,300 million Indians abandoned to their fate now!
Narendra Nayak, President, Federation of Indian Rationalist Associations
U.K. / China
COVID-19 has brought the public to witness first-hand science-in-the-making in a multi-centred world and allowed the scientific community to participate in real-time sense-making with various publics on risks and responsibilities. To borrow the term from Silvio Funtowicz, COVID-19 has ushered everyone into an era of "post-normal" science communication, in which the contents being communicated are contingent, objectives conflictual, outreach global, consequences personal, and (re)actions urgent. This further highlights the need to co-develop new approaches of transnational scientific dialogue in and with China, where public engagement is still at a nascent stage.
Joy Yueyue Zhang, Senior Lecturer in Sociology, School of Social Policy, Sociology, and Social Research, University of Kent
U.S.A.
I'm inspired by the work of Avi Schiffmann, a 17-year-old high school student in Seattle, Washington, who took it upon himself to create a well-designed and up-to-do-date website for tracking COVID-19 infections and deaths from around the world. Remember when the outbreak first happened and no one could get reliable information in one place? This kid—who had been coding since he was a child—created a massive data-scraping program that allowed a centralized location for this crucial info. And it's gotten millions of views. Now that's science communication!
Lee McIntyre, Research Fellow, Center for Philosophy and History of Science, Boston University
Syria
In Syria, the COVID-19 situation is messy and unclear and lacks transparency. From one side, official numbers show only 109 cases and four deaths since the outbreak; on the other side, these numbers are widely criticized by experts as well as by the public because of low testing and lack of official communication.
The nine-year-long war has hugely destroyed the medical infrastructure in Syria and pushed the majority of medical staff to leave the country. Despite these facts, the country went into only a partial lockdown and tried to minimize interactions among its population with shy measures.
The big absence in these measures was indeed "communication." None or only a few official institutions tried to keep the population updated about the evolution of the disease inside the country. This factor pushed many civil society organizations to take over, covering topics such as self-protection, molecular biology, and pharmaceutical updates. Moreover these initiatives, mainly via Facebook, fought against misleading information such as conspiracy theories and unethical drug use. In the near future, international organizations should learn from the Syrian example and pay more attention to the impact of these volunteer-based organizations that could replace official institutions for science communication during wartime.
Mouhannad Malek, Founder and Chairman, Syrian Researchers
Spain
From the skeptical movement, we noticed that at first almost everybody was very cautious, and few dared to screw it up with loose nonsense. But right away, some started placing the blame on their favorite enemy: Trump on China, China on Trump, or electromagnetic or 5G sensitivity—allied to the anti-vaccination, flat-earth, and Germanic New Medicine leagues. And then there are the crazy remedies pulled out of a hat.
Juan A. Rodríguez, Secretary, ARP–Sociedad para el Avance del Pensamiento Crítico (Society for the Advancement of Critical Thinking); Editor, El Escéptico (The Skeptic) magazine
Argentina / Brazil
Science communication and journalism have been reinvented in South America. More people are giving their time to contribute to science communication and are also actively engaged in teaching society how to be fact-checkers. Science popularization was reborn in small movements that spread checked news that "goes viral" through WhatsApp messages where, until then, Fake News had a clear ground. Low-cost podcasts boomed, shared sometimes even in the old way, through car loudspeakers in the street. Journalists, science communicators, and researchers became more active in professional networks. They also abandoned the practice of competing against each other, creating new ways to collaborate. Now, they share hard-to-access data through virtual meetings, pre-prints, or private communication, offering experts' contacts and valuable advice. This is the new normal.
Roxana Tabakman, Health Writer and Science Journalist, Red Argentina de Periodismo Científico (RADPC) (Argentinian Network of Science Journalism); Rede Brasileira de Jornalistas e Comunicadores de Ciência (RedeComCiência) (Brazilian Network of Science Journalists and Communicators)
Japan
In Japan, the lack of outreach from scientists and science communicators during the Fukushima nuclear power plant accident following the Great East Japan Earthquake in 2011 led to a growing distrust of science professionals. In this year's COVID-19 pandemic, many scientists are disseminating information online, and science communicators at research institutions are actively providing learning tools for children who are on standby at home. While politicians have yet to learn the importance of science communication, the public is learning how to seek out the information they need.
Masataka Watanabe, President, Japanese Association for Science Communication
Jordan
In these unprecedented times, building the case for science and research is of utmost priority. Therefore, at Phi Science Institute in Jordan, we aim to handle this responsibility very seriously on the regional and global levels by providing full coverage of the latest trusted scientific news in Arabic for the Arab world; turning our Research and Innovation Summit 2020 fully virtual to connect youth and experts for science from all across the region and enable them to work on joint research projects at this hard but unique time; and working with our artificial intelligence lab on healthcare A.I. products related to COVID-19.
Safa Khalaf, Community Outreach Officer, Phi Science Institute
U.S.A.
Initial response to the outbreak in the U.S. was striking for the high degree of support for and compliance with restrictions on public activity. Scientists were centerstage in their role advising government leaders. But U.S. opinion has been shifting. There are now growing partisan divisions over the risk COVID-19 poses to public health as well as over social distancing measures aimed at slowing the spread of the disease. And, unlike years past, a partisan imprint now extends to public confidence in medical scientists to act in the public interest.
Cary Funk, Director, Science and Society Research, Pew Research Center
Romania
Governments all over the world have realized the importance of good communication with the public. And they have also realized the impact that false news and misinformation can have on their efforts. I work in promoting vaccination, and until now, antivaccine ideas were considered fringe and limited. The pandemic has shown that anyone can start to become a source of misinformation, and we need to combat misinformation quickly and efficiently. This lesson, hopefully, will not be forgotten.
Ovidiu Covaciu, Administrator, Vaccinuri si Vaccinare (Vaccines and Vaccinations); Founder, Coaliția România Sănătoasă (Romania Healthy Coalition); Producer, Sceptici în România (Skeptics in Romania)
Russia
Just a year ago, we launched a specialty in communication in medicine and biotechnology in our SciComm M.Sc. program. It's been a long time coming! Like never before, we are facing the fact that science communication matters, and the lack of information only increases fears and frustrations.
Daria Denisova, Director, Science Communication and Outreach Office, ITMO University
South Africa
Novel ways of sharing the science of COVID-19 with children: In South Africa (and many other countries) scientists have partnered with authors and illustrators to create a range of storybooks, comics, and infographics (in many indigenous languages) to help children understand the pandemic.
The pandemic is also an infodemic: As much as there is a need (and demand) for scientific expertise, misinformation may also flourish when people are scared and uncertain. Combating misinformation is a complex task. It is important to understand the reasons why rumours and false claims spread, and to be thoughtful and respectful when trying to correct them. Here is some advice.
Marina Joubert, Senior Researcher, Centre for Research on Evaluation, Science and Technology (CREST), Stellenbosch University
U.K.
As a researcher of so-called alternative medicine (SCAM), I should have expected it—but when it did arrive, it came as a surprise nonetheless. I am talking about the number of snake-oil salesmen putting their ugly heads above the parapet. After the pandemic had been declared, it took just days for the promotion of corona quackery to start: acupuncture, chiropractic, herbal tinctures, homeopathic remedies, colloidal silver, essential oils, dietary supplements, and many more. The entire panopticum of SCAM was on display. This was when I decided to relentlessly name and shame the villains on my blog (edzardernst.com). Today, I must have posted over 40 articles about the "corona snake-oil brigade."
The second surprise was positive, I am glad to say. The amount of support I received was unprecedented. Hundreds of comments were posted by people who agreed that now it was more important than ever to disclose this quackery, point out what harm it does, and prevent the public from falling for it (at one stage, my humble blog was even quoted by U.S.A. Today). Many friends and colleagues joined in and wrote about SCAM merchants attempting to make a fast buck by misleading the public. But the public was far less gullible than the charlatans had hoped. My impression is that the snake-oil craze even provided a significant boost for critical thinking. The pandemic is doing untold, tragic damage, but it has also helps to explain to consumers how crucially important real science is and how devastatingly dangerous pseudoscience can be.
Edzard Ernst, Emeritus Professor, University of Exeter
"How can we sustain this appetite for science? Highlight the WHY more than the HOW and WHAT."
Pakistan
Pakistan is actively combating the COVID-19 pandemic by effective lockdowns. People are well aware of mask and sanitizer usage and are maintaining social distancing. Treatment of those affected is being provided by government hospitals.
Qaiser Majeed Malik, Chairman, Pakistan Science Foundation
Turkey
Despite strong faith in fatalism in Turkish society, trust and confidence in sciences have unexpectedly increased since the outbreak of COVID-19. Discussion programs on TV give their prime times to scientists more than governmental authorities. The Ministry of Health got more credit than any other political actors because of its daily updates on prevention arrangements. However, social media is more useful to share information about people's corona experiences in their living environments. Personal impressions and experiences are widely circulated during the outbreak, including health conditions and daily life routines under the "stay at home" conditions. Scientific content about COVID-19 is also heavily distributed, and governmental practices are called into question by social media users frequently. Individuals become more "science citizens" both by demanding scientific information from diverse and trustworthy sources and also by producing their own content.
Çiler Dursun, Professor, Faculty of Communication, Ankara University, Scientific Coordinator, Genovate
Malaysia
A lesson I learned during the pandemic as a science communicator: it takes a crisis for the public to heed science and see it as a solution provider. Followers on my Facebook page increased by more than 2,000; subscription to my newspaper, The Petri Dish, increased among the public; and more media interviews. How can we sustain this appetite for science? Highlight the WHY more than the HOW and WHAT.
Mahaletchumy Arujanan, Executive Director, Malaysian Biotechnology Information Centre (MABIC)
Germany
The brief guide on Proper Criticism by psychology professor Ray Hyman has been crucial for effective science communication, where he explains essential points, such as not going beyond your level of competence and using the principle of charity. Beyond presenting the facts and the science, which are often later forgotten by the audience, people remember the messenger. We have learned that coming across as compassionate, credible and trustworthy gives the message a far more significant and lasting impact.
Amardeo Sarma, Chair, Gesellschaft zur wissenschaftlichen Untersuchung von Parawissenschaften (Society for the Scientific Investigation of Parasciences)
Netherlands
In the early phase of the pandemic in the Netherlands, the government opted for a moderately strict lockdown and suggested that in this way the virus that was still present would lead to herd immunity. There was massive outrage because the public understood that civilians were being sacrificed for the creation of this herd immunity. When the government subsequently explained that the creation of herd immunity was not the goal of its policy but a welcome side effect, the unrest subsided.
Cees Renckens, Chair, Vereniging tegen de Kwaksalverij (Dutch Society Against Quackery)
Rwanda
At the University of Global Health Equity (UGHE), we have worked to further our educational mission during this unprecedented challenge of COVID-19, a pandemic that reminds us of the critical importance of our mission. With our campus located in the rural north of Rwanda, it was our priority to not only continue to provide quality education—which has transitioned to fully virtual learning—but also to take extensive precautions to protect our students, staff, faculty, and the surrounding community from the virus. Given the toll of this virus and the drastic change in social norms it has created, we are conducting not only weekly physical screenings but also mental health screenings. We are grateful to report that all from our UGHE community have remained in strong health. We are grateful to keep contributing to the fight for global health equity during a time such as this.
Agnes Binagwaho, Vice Chancellor, University of Global Health Equity; former Minister of Health
U.S.A.
The pandemic has revealed that now more than ever, science communication cannot prevail until nations and states dismantle the underlying structural injustices that erode trust in science. For instance, the exploitation of racial minorities' justified distrust of the medical establishment by anti-vaccine groups has become a matter of growing concern—from the 2017 Minnesota measles outbreak after activists convinced Somali-American immigrants that vaccines cause autism to the growing present-day opposition to a COVID-19 vaccine. Still, there is hope if only those who disseminate science-based information understand that the anti-vaccine movement, and similar movements that sit at the crossroads of science and society, have never been fundamentally about evidence. It's about whom to trust.
Kavin Senapathy, Science, health, and parenting writer; Member, American Society of Journalists and Authors; Contributing Editor, SciMoms.com
Indonesia
Although the clerics all agreed that public prayer should be banned to slow the spread of the disease, many Indonesian Muslims clogged the mosque during Ramadan and Eid, completely ignoring the health and religious authorities. Some Indonesian Muslims even strongly believe that somehow the Jewish and the Chinese are the masterminds of the pandemic—a bizarre claim that Muhammadiyah, one of the largest Muslim organizations, is trying hard to debunk. Conspiracy-theory believers are still not completely convinced by counter-arguments coming from religious authorities.
Rizqy Amelia Zein, Assistant Professor, Department of Personality and Social Psychology, Universitas Airlangga
U.S.A.
I practice Stoic philosophy and have been wondering what the Stoics might have to say about how to react to a pandemic. It struck me that our current situation is somewhat analogous to something many in the ancient world had to experience: exile. When someone is in exile, their life is very different, of lower quality, and far more constrained, than what they are used to. Just like during self-isolation or lockdown in a pandemic.
So what did the Stoics do when in exile? They taught philosophy to others, like Musonius Rufus, a famous first-century teacher. And they wrote letters of consolation to their loved ones, as Seneca, also in the first century, did to his mother Helvia.
In that letter, Seneca says that Fortune comes and goes, but what remains constant, and independent of Fortune, is our character, our determination to always be the best human beings we can be. Indeed, it is in times of difficulties and setbacks that we have an opportunity to shine. As he puts it, everyone is a good pilot when the sea is calm. It's only in the midst of a storm that we see who is truly skilled. So let's think of the current storm as an opportunity to improve our proficiency at navigating life.
Massimo Pigliucci, Professor of Philosophy, City College and the Graduate Center, City University of New York
Morocco
Our communication efforts have included webinars on the environment, climate change, and inter-linkages with the pandemic, for example effects of coronavirus on biodiversity, how COVID-19 has benefitted climate, and the green economic recovery from COVID-19. Our members have also written opinion articles published in journals and media in more than ten Arab countries. These activities have attracted the attention of communities, raised awareness as the scientific material was communicated in the Arabic language, and significantly unleashed the potential of our members.
Hajar Khamlichi, President and Co-Founder, Mediterranean Youth Climate Network; Board Member, Moroccan Alliance for Climate and Sustainable Development
Iran
Iran was one of the first countries to be involved in the crisis. Widespread international sanctions have restricted the capability to control the virus. In response to the pandemic, scientific institutions, non-governmental organizations, and government agencies have facilitated the transition from this crisis by:
Akram Ghadimi, Associate Professor, Department of Popularization of Science, National Research Institute for Science Policy
Philippines
Here in the Philippines, government agencies regularly post pandemic-related visual aids through social media in order to prove a point (e.g., "The curve is flattening," "We have more or fewer cases"), except the visual aids are unintuitive, if not altogether cherry-picked: Trend lines are traced haphazardly, bar charts are not drawn to scale, and government spokespersons almost literally tell people what to believe. Instead of just mocking these visual aids, younger data scientists and statisticians have taken to social media to talk about how to interpret data and why some visual aids are badly made. These scientists use these social media posts as a starting point to help people think critically rather than accept knowledge wholesale, which fits well with how the practice of science is about questioning, critical thinking, and healthy skepticism.
Inez Ponce de Leon, Assistant Professor, Department of Communication, Ateneo de Manila University
U.S.A. / Colombia
Seven years ago, I wrote a book in Spanish called Un enemigo invisible / An Invisible Enemy. This science and adventure novel for young adults is read in several schools throughout Colombia. The plot deals with a deadly virus that gets into Miami via a howler monkey brought from Guyana in a shipment of wild monkeys for lab research. The monkey is a reservoir (whose original host is a bat) of the (fictitious) virus Canzanboria, which infects one of the young main characters. The book thus becomes a race to find out what this virus is, where it comes from, how to get a vaccine, and how to stop it—like what is happening now.
The exciting part is that, because of the pandemic, several schools are hosting videoconferences where I can talk to kids about the book and my behind-the-scenes work with real-life virus hunters—research I did in order to write the novel. These kids are hugely interested and love my explanations about the evolution of viruses, the roles they play in our life, and the fact that were it not for a virus, none of us mammals would exist.
This pandemic has opened a window for me to take the scientific process to young minds in often inaccessible places in Colombia, as well as in China (the book was translated into Mandarin). I think reaching young people is the way to achieve a well-educated and interested society that will eventually grow up to support science in a meaningful way.
Ángela Posada-Swafford, Science, environment, and exploration journalist, lecturer, moderator, and book author; Board Member, Colombian Association of Science Journalists
Ghana
Shortly after the first case was reported, various professional science societies and associations came together to form a COVID response team. The purpose was simple: to coordinate availability of scientists for media engagements. It worked well and continues to do so, making sure that people remain informed based on accurate science. It has been a lesson on coming together and communicating science collaboratively.
Thomas Tagoe, Lecturer, Physiology and Pharmacology, University of Ghana; Co-Founder, GhScientific
Nepal
In order to control the rate of proliferation of COVID-19, social distancing has been a globally accepted effective method. In order to maintain such distancing and yet continue our business as usual, information and communication technology available today is very much useful. Also, mobile technology has been easily accessible even to people living in poverty in Nepal. Therefore, we can take the widespread use of internet platforms such as Skype, Facebook, Zoom, MS Teams, Voov, WhatsApp, Kakao, Viber, WeChat, etc. for any kind of communication including for science teaching, seminars, conferences, meetings, and discussions.
Sunil Babu Shrestha, Vice-Chancellor, Nepal Academy of Science and Technology (NAST)
"During this pandemic, perhaps most confusing of all has been the unexpected ideological struggle on the fundamentals of medicine."
Sudan
When it comes to disseminating scientific information, social media can do more harm than good in a time of crisis, due to the spread of inaccurate scientific information. In Sudan, a country that is fighting the spread of COVID-19 with little to almost no resources, WhatsApp, as usual, became the main source of news about the virus for the majority of internet users. Sudanese people's phones are flooded with misinformation, including unverified home remedies (the most viral one was drinking red tea before sunrise), fake research findings that the virus cannot survive the country's climate, and conspiracy theories claiming that the virus is a lie made up by the government to close down mosques and stop people from practicing their religion freely.
All this misinformation has led to people not following recommended policies, such as non-essential travel and social distancing. In fact, it has made some people go as far as protesting in huge numbers against the government's decision to close down the borders. In areas where access to smartphones is limited, the few people who do have smartphones end up being the main source of information for the rest.
The low level of tech literacy in many developing countries, especially among elderly communities, makes people less likely to verify sources. With the continuous increase of COVID-19 cases, misinformation will pose an even more dangerous threat for many countries. Some, like Qatar and Saudi Arabia, have criminalized its spread, but implementing such strict policies isn't always possible. This is why I believe youth- and community-led initiatives in countries like Sudan can take a leading role in raising awareness about the dangers of misinformation. People here have little trust in government but are welcoming of youth work.
Lina Yassin, Programme Manager, Climate Tracker, MENA (Middle East and North Africa)
Guatemala / U.S.A.
At the Cornell Alliance for Science, we are currently highlighting how science is being used to fight COVID-19 and dispelling myths through our online platform. In Guatemala, there have been different spaces created for "science innovation" to address the challenges this pandemic brings with communication strategies that include hashtags such as #nuestrascienciarespone (our science has answers) and #cienciaGTenaccion [GT (Guatemala) science in action]. However, there is also a lot of misinformation spread through the many social media platforms used in the country. We believe we can amplify projects that bring attention to how science is pivotal in a crisis and, at the same time, dispel misinformation by circulating fact-checked pieces in Spanish for our Central American audiences.
Pablo Ivan Orozco, Policy Affairs Associate, Cornell Alliance for Science
France
During this pandemic, perhaps most confusing of all has been the unexpected ideological struggle on the fundamentals of medicine. While evidence-based medicine was demonstrating its power, a discourse combining postmodernism and medieval thinking was developing "against the method," celebrating "common sense" medicine as opposed to medicine presented as big data and big pharma.
France found itself, with its "Marseille Protocol" at the center of this tornado whose effects were felt as far as the U.S.A.–Brazil axis. At the heart of the turmoil, the French Association for Scientific Information has endeavoured to communicate daily on its public website and its internal forum the reliable sources of information enabling everyone to untangle scientific facts from unfounded rumours, to understand where the established knowledge is and where the uncertainties lie, and to remind people that medicine is not a game of poker.
Michel Naud, Director and Former President, Association Française pour l'Information Scientifique (French Association for Scientific Information)
Serbia
During the COVID-19 pandemic, the Center for the Promotion of Science was active in raising citizens' awareness of the challenges they faced. Very early on, at the end of March, the Serbian translation of the extensive database was published on the Center's portal, enabling citizens to find out what is really behind the often confusing statistics that the media conveyed to the public in a clumsy and sometimes distorted manner. In early June, a new issue of the Center's popular science magazine Elementi was released. In a special segment containing six articles accompanied by appropriate visual storytelling, eminent physicians, philosophers, data scientists, science journalists, and graphic designers addressed some important topics related to the pandemic, such as the evolution of SARS-CoV-2, data modeling, mental health of physicians and citizens, and the moral challenges with which decision-makers were faced.
Ivan Umelji, Head of the Department for Publishing and Media Production, Centar za Promociju Nauke (Center for the Promotion of Science)
Marko Krstić, Acting Director, Centar za Promociju Nauke (Center for the Promotion of Science)
U.S.A. / U.K.
At Annual Reviews, we removed access control to all of our content—everything that we have published in the past 88 years—on March 13, 2020 in response to the COVID-19 pandemic. Compared to April 2019, usage of the content in April 2020 increased more than threefold (to 3.1 million downloads worldwide). It was not just our virology and public-health related content that was read more—every field from astronomy to vision science saw a substantial uptick. Removing barriers to access reveals the breadth interest in science for the public good: in the U.S., 28 different city governments, 18 state governments, the U.S. Department of Justice, the U.S. Senate, and the U.S. House of Representatives all recorded usage, as did parliaments in scores of other countries.
Strikingly, access from less wealthy nations rose dramatically; for example, Morocco by 1,403 percent and Ecuador by 1,033 percent. This usage re-emphasizes the value of democratizing access to science across all disciplines (not just COVID-19) and parts of the world.
While the great majority appreciate their personal and public duty to reduce the chance of infection, in the face of weeks of isolation and economic hardship, many people experience angst, anger, and disbelief. Using science to help people understand the dissonances that they were experiencing, and the necessity of their sacrifice, we developed a free service called Pandemic Life as a way to relate the body of social science research to the COVID-19 pandemic. Several times a week, articles that offer insights into such matters as the benefits of social norms, how to guide children's development, dealing with isolation, and the nature of happiness are covered on social media and in a short news story, and the relevant review article is made available for a deeper dive.
This evolved into a series of online conversations called Pandemic Live, during which some of the world's foremost researchers discuss and answer questions on aspects of the pandemic. Directly connecting the public with researchers in ways that go beyond sound bites and political posturing provides a powerful way to communicate reliable science insights into health, social, and economic issues in an age of misinformation.
Richard Gallagher, President & Editor-in-Chief, Annual Reviews, Publisher, Knowable Magazine
Russia
The experience of the South Korean church spreading coronavirus has not taught us—in Russia—anything. There have been large masses of people standing in line in the Kazan Cathedral to kiss the remains of a dead saint. A number of Russian Orthodox priests have commented that you cannot catch a virus in church. The head of church public communications has stated that people should avoid massive gatherings—but religious gatherings are an exception. In the Vatican, Pope Francis was a welcome contrast, giving Easter mass behind closed doors and praying in an empty St. Peter's Square, showing by example the distancing and isolation to which we must adhere in order to save lives. Unfortunately, the Russian Orthodox church does not have such concerns for the people.
Alexander Panchin, Senior Researcher, Institute for Information Transmission Problems (Kharkevich Institute); Member, Commission on Pseudoscience and Research Fraud, Russian Academy of Sciences
U.S.A.
Vaccination has fallen dramatically in the U.S. since the World Health Organization declared a pandemic. One proposal is to use gain-framed messages. This idea builds on insights from prospect theory, which was developed by Nobel laureate Daniel Kahneman. The theory suggests that prevention and treatment behaviors are motivated better by messages with a gain than a loss frame. As applied to our current crisis, the idea is to focus on the benefits of vaccination and on doctors' offices as being safe places. Many of us know more about what our grocery store is doing to keep us safe than what our doctor is doing. Proactively addressing this can help get vaccination back on track.
Noel Brewer, Professor, Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
Ethiopia
In Ethiopia, there are difficulties with governments, stakeholders, and the biomedical community regarding how media should further COVID-19 education and prevention. On March 27, 2020, the Ethiopian Ministry of Health and Ministry of Technology Innovation announced that Ethiopia made significant progress toward development of a cure for the virus: "In collaboration with Ethiopian traditional doctors and modern science research and clinical doctors, we are exploiting our indigenous and traditional knowledge and shaping it into modern science procedures to prepare a cure for COVID-19. The medicine has potential to prevent the virus, is non-poisonous, and is promising."
Following this announcement, many maverick and dissident scientists opposed the statement and said it was premature to make an announcement before a clinical trial was started and that it distracts people's attitudes from vigilance and alertness against the pandemic and politicizes the situation. The majority of Ethiopian people agree: a poll conducted through the messaging platform Telegram found that 71% of people said it was incorrect to make such an announcement before a clinical trial.
Tenaw Terefe, Assistant Professor, Faculty of Journalism and Communication, Addis Ababa University
Italy
As fake news and conspiracy theories about the coronavirus piled up every single day during lockdown, I found myself, as many other science popularizers here in Italy did, with an urge to share—with those following us on social media—analysis, critical thinking skills, and tools to overcome the craze and better understand what was happening.
Day after day, I noticed a closer bond developing with more and more people. They were not only asking the "expert" for information or insights in clearing up some new absurd claim, but they were also looking for some kind and reassuring words from someone they now perceived as a calm and rational friend, someone who could take even the wildest fears back down to earth.
Eventually, as things started to get a little easier and those who could returned to their jobs, crazier claims lost their grip, but the bond of trust between us, pop science talkers, and our audience, not only is still there, but has grown stronger. And it looks like a lot of good and promising things can come out of this.
Massimo Polidoro, Executive Director, Comitato Italiano per il Controllo delle Affermazioni sul paranormale (Italian Committee for the Investigation of Claims on the Paranormal)
Saudi Arabia
The infodemic we're currently seeing alerted me to a crucial point: the correct, reliable, and verified scientific information and evidence is widely available to all those who seek it.
In our digital age, the root cause of ignorance cannot be limited to only knowledge scarcity. A century ago, illiteracy was prevalent in the majority of the global population, and knowledge was only available to a small group of society. All of that has changed, but ignorance still prevails. The root causes must be deeper and broader.
I reckon that this particular ignorance is rooted in the wrong understanding of the scientific methodology process (making an observation, formalizing a hypothesis, experimenting, gathering data, analyzing it, and building a theory). The overwhelming majority of conspiracy theorists' arguments are based on a misconception of one of these basic principles, whether by confusing hypothesis for a theory, or lack of familiarity with methods of constructing a solid experiment, or ways of examining data and evidence, or erroneous analysis of experiments' results outside their scientific context.
Assuming the validity of this observation, the answer to all the ongoing "scientific" controversies won't be by discussing each issue separately, but by referring back to the basics of the scientific methodology, and determining the cognitive origins of this collective fault and reforming it.
Unfortunately, schools do not pay as much attention to the methodology as it deserves, but consider it as another lesson that must be finished to complete the curriculum. This has contributed to the emergence of many strange beliefs in our society without the slightest evidence or collective scrutiny. It is our role as science communicators to bring back the central role of the scientific methodology and reeducate the public about its importance and applications in our daily lives.
Faris Bukhamsin, CEO, Scientific Saudi
U.S.A. / India
Calling out scientific misinformation explicitly is critical for effective science communication. This can be an arduous task since misinformation can be generated rapidly (and at low cost!) through internet platforms. A group of scientists from top research institutes in India (the Tata Institute for Fundamental Research, Mumbai and the Indian Institute of Science, Bangalore) have set up a website with "Hoax Busters" that contains simple infographics explicitly calling out misinformation circulating in social media. This is a critical tool for science communication in a country like India where scientific literacy remains low but technology access has increased significantly (over 500 million smartphone users), leading to an explosion in the circulation of misinformation.
Abhilash Mishra, Director, Kevin Xu Initiative on Science, Technology, and Global Development, University of Chicago
Kenya
The Kenyan Government has been consistent in providing status updates with three key messages, while keeping communication short and simple:
1. Wash hands regularly with soap and sanitize often,
2. Social distancing, and
3. Wear face masks.
One other lesson is use of spokespersons trusted by communities such as faith-based leaders and local administration (not as widely, but at least this is a positive).
Margaret Karembu, Director, International Service for the Acquisition of Agri-biotech Applications (ISAAA) AfriCenter
Chad
This pandemic has shown us that we have an intimate relationship with nature and that there is an urgent need to enhance biodiversity protection. Biodiversity is a protection against the development of pandemics, and nature is our pharmacy and provides the molecules needed for both modern and traditional knowledge. Indigenous peoples have known this for centuries, living in harmony with nature, and advocating for a paradigm shift in our relationship to the environment. My hope is that this crisis will be a wake-up call for all of us. COVID-19 has demonstrated that politicians and business leaders are lost without science, and that listening to scientists can save lives.
Hindou Oumarou Ibrahim, Coordinator, Association des Femmes Peules Autochtones du Tchad (AFPAT) (Association of Peul Women and Autochthonous Peoples of Chad)
[Editor's Note: This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]