Will the Pandemic Propel STEM Experts to Political Power?
If your car won't run, you head to a mechanic. If your faucet leaks, you contact a plumber. But what do you do if your politics are broken? You call a… lawyer.
"Scientists have been more engaged with politics over the past three years amid a consistent sidelining of science and expertise, and now the pandemic has crystalized things even more."
That's been the American way since the beginning. Thousands of members of the House and Senate have been attorneys, along with nearly two dozen U.S. presidents from John Adams to Abraham Lincoln to Barack Obama. But a band of STEM professionals is changing the equation. They're hoping anger over the coronavirus pandemic will turn their expertise into a political superpower that propels more of them into office.
"This could be a turning point, part of an acceleration of something that's already happening," said Nancy Goroff, a New York chemistry professor who's running for a House seat in Long Island and will apparently be the first female scientist with a Ph.D. in Congress. "Scientists have been more engaged with politics over the past three years amid a consistent sidelining of science and expertise, and now the pandemic has crystalized things even more."
Professionals in the science, technology, engineering and medicine (STEM) fields don't have an easy task, however. To succeed, they must find ways to engage with voters instead of their usual target audiences — colleagues, patients and students. And they'll need to beat back a long-standing political tradition that has made federal and state politics a domain of attorneys and businesspeople, not nurses and biologists.
In the 2017-2018 Congress, more members of Congress said they'd worked as radio talk show hosts (seven) and as car dealership owners (six) than scientists (three — a physicist, a microbiologist, and a chemist), according to a 2018 report from the Congressional Research Service. There were more bankers (18) than physicians (14), more management consultants (18) than engineers (11), and more former judges (15) than dentists (4), nurses (2), veterinarians (3), pharmacists (1) and psychologists (3) combined.
In 2018, a "STEM wave" brought nine members with STEM backgrounds into office. But those with initials like PhD, MD and RN after their names are still far outnumbered by Esq. and MBA types.
Why the gap? Astrophysicist Rush Holt Jr., who served from 1999-2015 as a House representative from New Jersey, thinks he knows. "I have this very strong belief, based on 16 years in Congress and a long, intense public life, that the problem is not with science or the scientists," said. "It has to do with the fact that the public just doesn't pay attention to science. It never occurs to them that they have any role in the matter."
But Holt, former chief executive of the American Association for the Advancement of Science, believes change is on the way. "It's likely that the pandemic will affect people's attitudes," former congressman Holt said, "and lead them to think that they need more scientific thinking in policy-making and legislating." Holt's father was a U.S. senator from West Virginia, so he grew up with a political education. But how can scientists and medical professionals succeed if they have no background in the art of wooing voters?
That's where an organization called 314 Action comes in. Named after the first three digits of pi, 314 Action declares itself to be the "pro-science resistance" and says it's trained more than 1,400 scientists to run for public office.
In 2018, 9 out of 13 House and Senate candidates endorsed by the group won their races. In 2020, 314 Action is endorsing 12 candidates for the House (including an engineer), four for the Senate (including an astronaut) and one for governor (a mathematician in Kansas). It expects to spend $10 million-$20 million to support campaigns this year.
"Physicians, scientists and engineers are problem-solvers," said Shaughnessy Naughton, a Pennsylvania chemist who founded 314 Action after an unsuccessful bid for Congress. "They're willing to dive into issues, and their skills would benefit policy decisions that extend way beyond their scientific fields of expertise."
Like many political organizations, 314 Action focuses on teaching potential candidate how to make it in politics, aiming to help them drop habits that fail to bridge the gap between scientists and civilians. "Their first impulse is not to tell a story," public speaking coach Chris Jahnke told the public radio show "Marketplace" in 2018. "They would rather start with a stat." In a training session, Jahnke aimed to teach them to do both effectively.
"It just comes down to being able to speak about general principles in regular English, and to always have the science intertwined with basic human values," said Rep. Kim Schrier, a Washington state pediatrician who won election to Congress in 2018.
She believes her experience on the job has helped her make connections with voters. In a chat with parents about vaccines for their child, for example, she knows not to directly jump into an arcane discussion of case-control studies.
The best alternative, she said, is to "talk about how hard it is to be a parent making these decisions, feeling scared and worried. Then say that you've looked at the data and the research, and point out that pediatricians would never do anything to hurt children because we want to do everything that is good for them. When you speak heart to heart, it gets across the message and the credibility of medicine and science."
The pandemic "will hopefully awaken people and trigger a change that puts science, medicine and public health on a pedestal where science is revered and not dismissed as elitist."
Communication skills will be especially important if the pandemic spurs more Americans to focus on politics and the records of incumbents in regard to matters like public health and climate change. Thousands of candidates will have to address the nation's coronavirus response, and a survey commissioned by 314 Action suggests that voters may be receptive to those with STEM backgrounds. The poll, of 1,002 likely voters in early April 2020, found that 41%-46% of those surveyed said they'd be "much more favorable" toward candidates who were doctors, nurses, scientists and public health professionals. Those numbers were the highest in the survey compared to just 9% for lawyers.
The pandemic "will hopefully awaken people and trigger a change that puts science, medicine and public health on a pedestal where science is revered and not dismissed as elitist," Dr. Schrier said. "It will come from a recognition that what's going to get us out of this bind are scientists, vaccine development and the hard work of the people in public health on the ground."
[This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]
DNA- and RNA-based electronic implants may revolutionize healthcare
Implantable electronic devices can significantly improve patients’ quality of life. A pacemaker can encourage the heart to beat more regularly. A neural implant, usually placed at the back of the skull, can help brain function and encourage higher neural activity. Current research on neural implants finds them helpful to patients with Parkinson’s disease, vision loss, hearing loss, and other nerve damage problems. Several of these implants, such as Elon Musk’s Neuralink, have already been approved by the FDA for human use.
Yet, pacemakers, neural implants, and other such electronic devices are not without problems. They require constant electricity, limited through batteries that need replacements. They also cause scarring. “The problem with doing this with electronics is that scar tissue forms,” explains Kate Adamala, an assistant professor of cell biology at the University of Minnesota Twin Cities. “Anytime you have something hard interacting with something soft [like muscle, skin, or tissue], the soft thing will scar. That's why there are no long-term neural implants right now.” To overcome these challenges, scientists are turning to biocomputing processes that use organic materials like DNA and RNA. Other promised benefits include “diagnostics and possibly therapeutic action, operating as nanorobots in living organisms,” writes Evgeny Katz, a professor of bioelectronics at Clarkson University, in his book DNA- And RNA-Based Computing Systems.
While a computer gives these inputs in binary code or "bits," such as a 0 or 1, biocomputing uses DNA strands as inputs, whether double or single-stranded, and often uses fluorescent RNA as an output.
Adamala’s research focuses on developing such biocomputing systems using DNA, RNA, proteins, and lipids. Using these molecules in the biocomputing systems allows the latter to be biocompatible with the human body, resulting in a natural healing process. In a recent Nature Communications study, Adamala and her team created a new biocomputing platform called TRUMPET (Transcriptional RNA Universal Multi-Purpose GatE PlaTform) which acts like a DNA-powered computer chip. “These biological systems can heal if you design them correctly,” adds Adamala. “So you can imagine a computer that will eventually heal itself.”
The basics of biocomputing
Biocomputing and regular computing have many similarities. Like regular computing, biocomputing works by running information through a series of gates, usually logic gates. A logic gate works as a fork in the road for an electronic circuit. The input will travel one way or another, giving two different outputs. An example logic gate is the AND gate, which has two inputs (A and B) and two different results. If both A and B are 1, the AND gate output will be 1. If only A is 1 and B is 0, the output will be 0 and vice versa. If both A and B are 0, the result will be 0. While a computer gives these inputs in binary code or "bits," such as a 0 or 1, biocomputing uses DNA strands as inputs, whether double or single-stranded, and often uses fluorescent RNA as an output. In this case, the DNA enters the logic gate as a single or double strand.
If the DNA is double-stranded, the system “digests” the DNA or destroys it, which results in non-fluorescence or “0” output. Conversely, if the DNA is single-stranded, it won’t be digested and instead will be copied by several enzymes in the biocomputing system, resulting in fluorescent RNA or a “1” output. And the output for this type of binary system can be expanded beyond fluorescence or not. For example, a “1” output might be the production of the enzyme insulin, while a “0” may be that no insulin is produced. “This kind of synergy between biology and computation is the essence of biocomputing,” says Stephanie Forrest, a professor and the director of the Biodesign Center for Biocomputing, Security and Society at Arizona State University.
Biocomputing circles are made of DNA, RNA, proteins and even bacteria.
Evgeny Katz
The TRUMPET’s promise
Depending on whether the biocomputing system is placed directly inside a cell within the human body, or run in a test-tube, different environmental factors play a role. When an output is produced inside a cell, the cell's natural processes can amplify this output (for example, a specific protein or DNA strand), creating a solid signal. However, these cells can also be very leaky. “You want the cells to do the thing you ask them to do before they finish whatever their businesses, which is to grow, replicate, metabolize,” Adamala explains. “However, often the gate may be triggered without the right inputs, creating a false positive signal. So that's why natural logic gates are often leaky." While biocomputing outside a cell in a test tube can allow for tighter control over the logic gates, the outputs or signals cannot be amplified by a cell and are less potent.
TRUMPET, which is smaller than a cell, taps into both cellular and non-cellular biocomputing benefits. “At its core, it is a nonliving logic gate system,” Adamala states, “It's a DNA-based logic gate system. But because we use enzymes, and the readout is enzymatic [where an enzyme replicates the fluorescent RNA], we end up with signal amplification." This readout means that the output from the TRUMPET system, a fluorescent RNA strand, can be replicated by nearby enzymes in the platform, making the light signal stronger. "So it combines the best of both worlds,” Adamala adds.
These organic-based systems could detect cancer cells or low insulin levels inside a patient’s body.
The TRUMPET biocomputing process is relatively straightforward. “If the DNA [input] shows up as single-stranded, it will not be digested [by the logic gate], and you get this nice fluorescent output as the RNA is made from the single-stranded DNA, and that's a 1,” Adamala explains. "And if the DNA input is double-stranded, it gets digested by the enzymes in the logic gate, and there is no RNA created from the DNA, so there is no fluorescence, and the output is 0." On the story's leading image above, if the tube is "lit" with a purple color, that is a binary 1 signal for computing. If it's "off" it is a 0.
While still in research, TRUMPET and other biocomputing systems promise significant benefits to personalized healthcare and medicine. These organic-based systems could detect cancer cells or low insulin levels inside a patient’s body. The study’s lead author and graduate student Judee Sharon is already beginning to research TRUMPET's ability for earlier cancer diagnoses. Because the inputs for TRUMPET are single or double-stranded DNA, any mutated or cancerous DNA could theoretically be detected from the platform through the biocomputing process. Theoretically, devices like TRUMPET could be used to detect cancer and other diseases earlier.
Adamala sees TRUMPET not only as a detection system but also as a potential cancer drug delivery system. “Ideally, you would like the drug only to turn on when it senses the presence of a cancer cell. And that's how we use the logic gates, which work in response to inputs like cancerous DNA. Then the output can be the production of a small molecule or the release of a small molecule that can then go and kill what needs killing, in this case, a cancer cell. So we would like to develop applications that use this technology to control the logic gate response of a drug’s delivery to a cell.”
Although platforms like TRUMPET are making progress, a lot more work must be done before they can be used commercially. “The process of translating mechanisms and architecture from biology to computing and vice versa is still an art rather than a science,” says Forrest. “It requires deep computer science and biology knowledge,” she adds. “Some people have compared interdisciplinary science to fusion restaurants—not all combinations are successful, but when they are, the results are remarkable.”
In today’s podcast episode, Leaps.org Deputy Editor Lina Zeldovich speaks about the health and ecological benefits of farming crickets for human consumption with Bicky Nguyen, who joins Lina from Vietnam. Bicky and her business partner Nam Dang operate an insect farm named CricketOne. Motivated by the idea of sustainable and healthy protein production, they started their unconventional endeavor a few years ago, despite numerous naysayers who didn’t believe that humans would ever consider munching on bugs.
Yet, making creepy crawlers part of our diet offers many health and planetary advantages. Food production needs to match the rise in global population, estimated to reach 10 billion by 2050. One challenge is that some of our current practices are inefficient, polluting and wasteful. According to nonprofit EarthSave.org, it takes 2,500 gallons of water, 12 pounds of grain, 35 pounds of topsoil and the energy equivalent of one gallon of gasoline to produce one pound of feedlot beef, although exact statistics vary between sources.
Meanwhile, insects are easy to grow, high on protein and low on fat. When roasted with salt, they make crunchy snacks. When chopped up, they transform into delicious pâtes, says Bicky, who invents her own cricket recipes and serves them at industry and public events. Maybe that’s why some research predicts that edible insects market may grow to almost $10 billion by 2030. Tune in for a delectable chat on this alternative and sustainable protein.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Further reading:
More info on Bicky Nguyen
https://yseali.fulbright.edu.vn/en/faculty/bicky-n...
The environmental footprint of beef production
https://www.earthsave.org/environment.htm
https://www.watercalculator.org/news/articles/beef-king-big-water-footprints/
https://www.frontiersin.org/articles/10.3389/fsufs.2019.00005/full
https://ourworldindata.org/carbon-footprint-food-methane
Insect farming as a source of sustainable protein
https://www.insectgourmet.com/insect-farming-growing-bugs-for-protein/
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/insect-farming
Cricket flour is taking the world by storm
https://www.cricketflours.com/
https://talk-commerce.com/blog/what-brands-use-cricket-flour-and-why/
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.