Would You Want to Know a Decade Early If You Were Getting Alzheimer's?
Editor's Note: A team of researchers in Italy recently used artificial intelligence and machine learning to diagnose Alzheimer's disease on a brain scan an entire decade before symptoms show up in the patient. While some people argue that early detection is critical, others believe the knowledge would do more harm than good. LeapsMag invited contributors with opposite opinions to share their perspectives.
I first realized something was wrong with my dad when I came home for Thanksgiving 20 years ago.
I hadn't seen my family for more than a year after moving from New York to California. My father was meticulous, a multi-shower a day man, a regular Beau Brummell. He was never officially diagnosed with dementia, but it was easy to figure out after he stopped leaving the house, stopped reading, stopped being himself. My mother knew, but she never sought help. After his illness showed itself, I asked her if she considered a nursing home. "Never," she told me. "I can take care of him." And she did.
She gave herself a break once to visit me, and it was the first time she traveled separately from him since they eloped at seventeen. My brother watched my father, and it was not smooth. Dad was angry, hallucinating, and demanding his gun, which had been disposed of long ago. While Mom was visiting me in California, we played some board games. One demanded honest answers. The card read, What are you most afraid of? "Dementia," she said.
My father never saw this coming, none of us did.
Dementia ran on my mother's side. Her mother, my Nana, was senile, the popular diagnosis for older folks back then. My grandfather tried his hardest to take care of her, but she kept escaping their tidy 6th floor apartment to run away. My mother would go over every day to take care of them, but once my grandfather became ill, she took her mother into our apartment. She had two small children, Nana, and her husband in a two-bedroom flat. Nana talked to people under plates, wore tissues on her head, and tried to escape. We were on the first floor, so she could run into traffic if all eyes weren't on her. Soon, it was too much, even for my Wonder Woman mom. Nana was placed in a nursing home and died soon after.
My mother dropped dead on a NYC sidewalk two years after my father started to deteriorate. She was probably going to the store to buy milk and cigarettes. A kind stranger called 911, and a cop came to my parent's door soon after to tell my dad the news. My father cried for death, raged and ranted, then calmed down enough to come back as the dad we remembered for the week of mourning. He even ordered a Manhattan at dinner. His death came exactly a week and an hour after my mother's. He died of a broken heart. My husband cried with all his body after we left the cemetery, weeping, "Poor Buck. Poor Buck." I never saw him cry before.
Now, 18 years later, I sit here with my husband, 59 years old, as he suffers from the same hideous disease.
He is talking to someone I can't see, even laughing with him. He holds a Ph.D. in literature, taught college, had a single handicap golf game, and ate well. We never saw this coming. One day he went to type and jumbled letters came on the screen. He would show up late or early for his classes, wondering what was wrong with the students. He started running red lights. He was graciously counseled to retire, and he did, at 55. His doctor told him it was depression. The second opinion agreed. He was told to do nothing for a year, and he did. He played golf a bit, then one day he couldn't speak or think clearly. I came home from work to find him roaming the neighborhood, eyes ablaze, muttering to himself. I went on family leave. Many tests later we got the working diagnosis, but it meant nothing to him. He never reacted to the words Primary Progressive Aphasia or dementia. I was glad. If he was lucid, I knew what he would talk about doing. He told me after my dad's death that he did not want that life for himself.
I worry I may get it, too. It almost seems inescapable. Dementia has no cure, and the treatments for the symptoms are hit and miss. I thought about getting the full flight of predictive tests, but I know myself, and I scare myself into bracing for the worst. Others scare me, too, when I read their online statements about ending their lives if they learn they have it: I told my children to take me to a state where assisted suicide is legal; it's easy to overdose; I don't want to be a burden on my children. These are caregivers on social media forums. They live with the terror, eyes wide open. We have no children, but who would I burden? My sisters? My brother? Do I stay or do I go? This disease invites pandemonium. Assisted murder-suicides with caregiver spouses of those with dementia don't merit headlines, but their stories are on the sidebars. No thanks. I work on God's timeline.
There are no survivors – yet.
A diagnosis today would paralyze me and create melancholy for all who know me. I would second guess everything, I would read everything, I would cry, I would hardly live. I would be tempted to pick up that first drink after 20 plus years sober. I would even think about ending my life. It would be difficult not to consider. As a high school English teacher, I talk about suicide when I teach Hamlet. I tell the students suicide is a permanent solution to a temporary problem. Dementia isn't temporary. There are no survivors – yet.
I often think what my relatives would have done with an advance diagnosis. My grandmother was a classic worrier. She would have been beyond distraught. My father might have found that gun. My husband would have taken the right number of pills.
An advance diagnosis would paralyze me.
I appreciate the arguments for early diagnosis. Some people are made of sterner stuff. They have the mindset I lack. I admire so many who are contributing to the current conversation about dementia and are active advocates for a cure. They have found a purpose in their fate.
I don't need a test to get my ducks in a row. Loving those with dementia has prompted me to be prepared. I have a different type of bucket list: reset my priorities, slow down, be present, educate others, and make my legal plans. If and when it happens, there will be time for toast and tea and a walk along the shore. There will be time to plan for the inevitable and unenviable end. I am morbid enough to know I will recognize the purple elephant in the room. I don't want the shock and awe now. I can wait. My sisters agree. We will keep our elbows out.
Editor's Note: Consider the other side of the argument here.
Scientists experiment with burning iron as a fuel source
Story by Freethink
Try burning an iron metal ingot and you’ll have to wait a long time — but grind it into a powder and it will readily burst into flames. That’s how sparklers work: metal dust burning in a beautiful display of light and heat. But could we burn iron for more than fun? Could this simple material become a cheap, clean, carbon-free fuel?
In new experiments — conducted on rockets, in microgravity — Canadian and Dutch researchers are looking at ways of boosting the efficiency of burning iron, with a view to turning this abundant material — the fourth most common in the Earth’s crust, about about 5% of its mass — into an alternative energy source.
Iron as a fuel
Iron is abundantly available and cheap. More importantly, the byproduct of burning iron is rust (iron oxide), a solid material that is easy to collect and recycle. Neither burning iron nor converting its oxide back produces any carbon in the process.
Iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again.
Iron has a high energy density: it requires almost the same volume as gasoline to produce the same amount of energy. However, iron has poor specific energy: it’s a lot heavier than gas to produce the same amount of energy. (Think of picking up a jug of gasoline, and then imagine trying to pick up a similar sized chunk of iron.) Therefore, its weight is prohibitive for many applications. Burning iron to run a car isn’t very practical if the iron fuel weighs as much as the car itself.
In its powdered form, however, iron offers more promise as a high-density energy carrier or storage system. Iron-burning furnaces could provide direct heat for industry, home heating, or to generate electricity.
Plus, iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again (as long as you’ve got a source of clean electricity or green hydrogen). When there’s excess electricity available from renewables like solar and wind, for example, rust could be converted back into iron powder, and then burned on demand to release that energy again.
However, these methods of recycling rust are very energy intensive and inefficient, currently, so improvements to the efficiency of burning iron itself may be crucial to making such a circular system viable.
The science of discrete burning
Powdered particles have a high surface area to volume ratio, which means it is easier to ignite them. This is true for metals as well.
Under the right circumstances, powdered iron can burn in a manner known as discrete burning. In its most ideal form, the flame completely consumes one particle before the heat radiating from it combusts other particles in its vicinity. By studying this process, researchers can better understand and model how iron combusts, allowing them to design better iron-burning furnaces.
Discrete burning is difficult to achieve on Earth. Perfect discrete burning requires a specific particle density and oxygen concentration. When the particles are too close and compacted, the fire jumps to neighboring particles before fully consuming a particle, resulting in a more chaotic and less controlled burn.
Presently, the rate at which powdered iron particles burn or how they release heat in different conditions is poorly understood. This hinders the development of technologies to efficiently utilize iron as a large-scale fuel.
Burning metal in microgravity
In April, the European Space Agency (ESA) launched a suborbital “sounding” rocket, carrying three experimental setups. As the rocket traced its parabolic trajectory through the atmosphere, the experiments got a few minutes in free fall, simulating microgravity.
One of the experiments on this mission studied how iron powder burns in the absence of gravity.
In microgravity, particles float in a more uniformly distributed cloud. This allows researchers to model the flow of iron particles and how a flame propagates through a cloud of iron particles in different oxygen concentrations.
Existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
Insights into how flames propagate through iron powder under different conditions could help design much more efficient iron-burning furnaces.
Clean and carbon-free energy on Earth
Various businesses are looking at ways to incorporate iron fuels into their processes. In particular, it could serve as a cleaner way to supply industrial heat by burning iron to heat water.
For example, Dutch brewery Swinkels Family Brewers, in collaboration with the Eindhoven University of Technology, switched to iron fuel as the heat source to power its brewing process, accounting for 15 million glasses of beer annually. Dutch startup RIFT is running proof-of-concept iron fuel power plants in Helmond and Arnhem.
As researchers continue to improve the efficiency of burning iron, its applicability will extend to other use cases as well. But is the infrastructure in place for this transition?
Often, the transition to new energy sources is slowed by the need to create new infrastructure to utilize them. Fortunately, this isn’t the case with switching from fossil fuels to iron. Since the ideal temperature to burn iron is similar to that for hydrocarbons, existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.
How to Use Thoughts to Control Computers with Dr. Tom Oxley
Tom Oxley is building what he calls a “natural highway into the brain” that lets people use their minds to control their phones and computers. The device, called the Stentrode, could improve the lives of hundreds of thousands of people living with spinal cord paralysis, ALS and other neurodegenerative diseases.
Leaps.org talked with Dr. Oxley for today’s podcast. A fascinating thing about the Stentrode is that it works very differently from other “brain computer interfaces” you may be familiar with, like Elon Musk’s Neuralink. Some BCIs are implanted by surgeons directly into a person’s brain, but the Stentrode is much less invasive. Dr. Oxley’s company, Synchron, opts for a “natural” approach, using stents in blood vessels to access the brain. This offers some major advantages to the handful of people who’ve already started to use the Stentrode.
The audio improves about 10 minutes into the episode. (There was a minor headset issue early on, but everything is audible throughout.) Dr. Oxley’s work creates game-changing opportunities for patients desperate for new options. His take on where we're headed with BCIs is must listening for anyone who cares about the future of health and technology.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
In our conversation, Dr. Oxley talks about “Bluetooth brain”; the critical role of AI in the present and future of BCIs; how BCIs compare to voice command technology; regulatory frameworks for revolutionary technologies; specific people with paralysis who’ve been able to regain some independence thanks to the Stentrode; what it means to be a neurointerventionist; how to scale BCIs for more people to use them; the risks of BCIs malfunctioning; organic implants; and how BCIs help us understand the brain, among other topics.
Dr. Oxley received his PhD in neuro engineering from the University of Melbourne in Australia. He is the founding CEO of Synchron and an associate professor and the head of the vascular bionics laboratory at the University of Melbourne. He’s also a clinical instructor in the Deepartment of Neurosurgery at Mount Sinai Hospital. Dr. Oxley has completed more than 1,600 endovascular neurosurgical procedures on patients, including people with aneurysms and strokes, and has authored over 100 peer reviewed articles.
Links:
Synchron website - https://synchron.com/
Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients (paper co-authored by Tom Oxley) - https://jamanetwork.com/journals/jamaneurology/art...
More research related to Synchron's work - https://synchron.com/research
Tom Oxley on LinkedIn - https://www.linkedin.com/in/tomoxl
Tom Oxley on Twitter - https://twitter.com/tomoxl?lang=en
Tom Oxley TED - https://www.ted.com/talks/tom_oxley_a_brain_implant_that_turns_your_thoughts_into_text?language=en
Tom Oxley website - https://tomoxl.com/
Novel brain implant helps paralyzed woman speak using digital avatar - https://engineering.berkeley.edu/news/2023/08/novel-brain-implant-helps-paralyzed-woman-speak-using-a-digital-avatar/
Edward Chang lab - https://changlab.ucsf.edu/
BCIs convert brain activity into text at 62 words per minute - https://med.stanford.edu/neurosurgery/news/2023/he...
Leaps.org: The Mind-Blowing Promise of Neural Implants - https://leaps.org/the-mind-blowing-promise-of-neural-implants/
Tom Oxley