Your Beloved Pet Is Old. Should You Clone It?
Melvin was a special dog. A mixture of Catahoula and Doberman with black and tan markings, he was the office greeter, barking hellos to everyone who visited the Dupont Veterinary Clinic in Lafayette, Louisiana, which is owned by his human companions, Dr. Phillip Dupont and his wife, Paula. The couple say he's the best dog they ever owned.
When Melvin passed away, having two identical replicas helped ease the couple's grief.
He seemed to have an uncanny knack for understanding what they were saying, he could find lost car keys in tall grasses and the Duponts trusted him so much they felt comfortable having him babysit their grandson unattended in the backyard.
So when the 75-pound canine turned 9 and began to show signs of age, the Duponts sent off some of his skin cells to a lab in South Korea, the Sooam Biotech Research Foundation, to have him cloned. The Duponts toured the South Korean facilities and were satisfied that the animals were being treated well. While the first cloned puppy died from distemper, the second attempt produced two healthy animals—which the couple named Ken and Henry. When Melvin did pass away nearly two years later, in 2014, having two identical replicas helped ease the couple's grief. Even though it cost about $70,000 to clone Melvin, it was well worth it. "Melvin gave us a lot of pleasure," says Paula Dupont, "and this was less than the price of a new Land Cruiser."
As the technology improves, costs will tumble, making pet cloning more affordable for the mainstream.
The news has been filled recently with stories of celebrities such as Barbra Streisand or billionaire Barry Diller and his fashion icon wife, Diane von Furstenberg, spending big bucks to preserve their beloved pets—a practice New York magazine called "a laughable, extravagant waste of money." But cloning Fido isn't just for the ultra-wealthy anymore. Texas-based ViaGen now offers a domestic cloning service that will replicate Lassie for $50,000 and Garfield's kittens for a mere $25,000. While the exact number of cloned pets isn't known, the South Korean company says it has cloned about 800 pets while ViaGen has cloned about 100 cats and dogs. And as the technology improves, costs will tumble, making it more affordable for the mainstream, says Ron Gillespie, who heads PerPETuate, a Massachusetts-based outfit that collects and cryo preserves pet DNA, and works closely with ViaGen.
Even if the animals are genetic twins, biologists say, there are no guarantees their personalities will match, too.
While replicating Fido is becoming more feasible, should you? Animal rights organizations like The Humane Society and PETA are sharply critical of the practice, which is largely unregulated, and think it's outrageous to spend $50,000 or more to preserve Fluffy's genetic makeup when millions of cats and dogs are languishing in shelters and millions more are euthanized every year. And even if the animals are genetic twins, biologists say, there are no guarantees their personalities will match, too. Like humans, dogs' personalities are influenced by their environment and there are always variations in how the genes are expressed--although the Duponts say that Ken and Henry seem more like Melvin every day. "Their personalities are identical," says Paula.
Clones Ken and Henry, with Dr. Dupont and 10-year-old Melvin. Though all three dogs are genetic twins, their markings differ because the environment can influence how genes are expressed.
Still, the loss of a beloved pet can be incredibly painful, and in some cases, cloning can help deal with deep psychological wounds. When Monni Must's daughter died suddenly at age 28, the Michigan-based photographer adopted her child's black Lab, Billy Bean. As the dog got older and frailer, Must realized she couldn't handle losing her last link to her daughter—so she ponied up $50,000 to have the animal cloned. "I knew that I was falling apart," Must told Agence France-Presse. "The thought of Billy dying was just more than I could handle."
But these heated disputes miss what bioethicists believe is the real ethical dilemma—the fate of the female animals that provide the eggs and gestate the cloned puppies. "This issue tends to get framed as 'it's their personal choice, it's their money and they can do what they want with it,'" says Jessica Pierce, a bioethicist and author of Run, Spot, Run: The Ethics of Keeping Pets. "But this whole enterprise has all this collateral damage and behind-the-scenes impacts that people ignore. No one is talking about the dogs who are sacrificing themselves for this indulgence, and are suffering and being tormented just to have your clone."
"Even in the best-case scenarios, the cloned pet may go through several rounds of failed reproductive attempts—failed pregnancies, still births, and deformities."
Animal cloning, of course, is not new. Dolly, the sheep, made her debut in 1996 as the first cloned mammal. In 2005, Korea's Sooam Biotech cloned the first dog, and cloning horses and cows has become almost routine. Typically, the cloning process for dogs is fairly uncomplicated. It entails the use of a group of female dogs whose hormones are artificially manipulated with drugs to promote them to produce eggs. The eggs are then surgically harvested from donor dogs' ovaries. The immature eggs are stripped of their genetic information and then the pet's DNA is fused with the egg. When the embryo begins to develop, it is then transplanted to the womb of a surrogate dog.
However, cloning can have a high failure rate. When South Korea's Sooam Biotech lab cloned the first dog in 2005, there were 1000 failures—which means that number of eggs were fertilized and began to gestate, but at some point their development failed. And this figure doesn't include the number of dogs born with deformities serious enough that they are incompatible with life and need to be euthanized. "Even in the best-case scenarios, the cloned pet may go through several rounds of failed reproductive attempts—failed pregnancies, still births, and deformities," says Insoo Hyun, a bioethicist at Case Western Reserve University in Cleveland. "You can't do just one egg and one transfer. That won't happen. There is no guarantee that the very first time you will have a healthy animal. They're not miracle workers and you can't fight biology."
"You just have to let your pet go. It's all part of the experience."
But Ron Gillespie, who's been in the animal breeding business for decades, thinks these fears are overblown and that cloning is similar to the selective breeding that goes on all the time with cattle and even with champion racehorses. "We're really the victim of a lot of misinformation and misunderstanding," he says. "Right now, on average, we're dealing with three dogs: two that supply eggs and one to carry the embryo to term."
Still, this debate skirts the hard realities: dogs and cats simply have shorter lifespans than humans, and ethicists and animal rights activists believe there are better ways to deal with that grief. "You just have to let your pet go," says Hyun. "It's all part of the experience."
Is there a robot nanny in your child's future?
From ROBOTS AND THE PEOPLE WHO LOVE THEM: Holding on to Our Humanity in an Age of Social Robots by Eve Herold. Copyright © 2024 by the author and reprinted by permission of St. Martin’s Publishing Group.
Could the use of robots take some of the workload off teachers, add engagement among students, and ultimately invigorate learning by taking it to a new level that is more consonant with the everyday experiences of young people? Do robots have the potential to become full-fledged educators and further push human teachers out of the profession? The preponderance of opinion on this subject is that, just as AI and medical technology are not going to eliminate doctors, robot teachers will never replace human teachers. Rather, they will change the job of teaching.
A 2017 study led by Google executive James Manyika suggested that skills like creativity, emotional intelligence, and communication will always be needed in the classroom and that robots aren’t likely to provide them at the same level that humans naturally do. But robot teachers do bring advantages, such as a depth of subject knowledge that teachers can’t match, and they’re great for student engagement.
The teacher and robot can complement each other in new ways, with the teacher facilitating interactions between robots and students. So far, this is the case with teaching “assistants” being adopted now in China, Japan, the U.S., and Europe. In this scenario, the robot (usually the SoftBank child-size robot NAO) is a tool for teaching mainly science, technology, engineering, and math (the STEM subjects), but the teacher is very involved in planning, overseeing, and evaluating progress. The students get an entertaining and enriched learning experience, and some of the teaching load is taken off the teacher. At least, that’s what researchers have been able to observe so far.
To be sure, there are some powerful arguments for having robots in the classroom. A not-to-be-underestimated one is that robots “speak the language” of today’s children, who have been steeped in technology since birth. These children are adept at navigating a media-rich environment that is highly visual and interactive. They are plugged into the Internet 24-7. They consume music, games, and huge numbers of videos on a weekly basis. They expect to be dazzled because they are used to being dazzled by more and more spectacular displays of digital artistry. Education has to compete with social media and the entertainment vehicles of students’ everyday lives.
Another compelling argument for teaching robots is that they help prepare students for the technological realities they will encounter in the real world when robots will be ubiquitous. From childhood on, they will be interacting and collaborating with robots in every sphere of their lives from the jobs they do to dealing with retail robots and helper robots in the home. Including robots in the classroom is one way of making sure that children of all socioeconomic backgrounds will be better prepared for a highly automated age, when successfully using robots will be as essential as reading and writing. We’ve already crossed this threshold with computers and smartphones.
Students need multimedia entertainment with their teaching. This is something robots can provide through their ability to connect to the Internet and act as a centralized host to videos, music, and games. Children also need interaction, something robots can deliver up to a point, but which humans can surpass. The education of a child is not just intended to make them technologically functional in a wired world, it’s to help them grow in intellectual, creative, social, and emotional ways. When considered through this perspective, it opens the door to questions concerning just how far robots should go. Robots don’t just teach and engage children; they’re designed to tug at their heartstrings.
It’s no coincidence that many toy makers and manufacturers are designing cute robots that look and behave like real children or animals, says Turkle. “When they make eye contact and gesture toward us, they predispose us to view them as thinking and caring,” she has written in The Washington Post. “They are designed to be cute, to provide a nurturing response” from the child. As mentioned previously, this nurturing experience is a powerful vehicle for drawing children in and promoting strong attachment. But should children really love their robots?
ROBOTS AND THE PEOPLE WHO LOVE THEM: Holding on to Our Humanity in an Age of Social Robots by Eve Herold (January 9, 2024).
St. Martin’s Publishing Group
The problem, once again, is that a child can be lulled into thinking that she’s in an actual relationship, when a robot can’t possibly love her back. If adults have these vulnerabilities, what might such asymmetrical relationships do to the emotional development of a small child? Turkle notes that while we tend to ascribe a mind and emotions to a socially interactive robot, “simulated thinking may be thinking, but simulated feeling is never feeling, and simulated love is never love.”
Always a consideration is the fact that in the first few years of life, a child’s brain is undergoing rapid growth and development that will form the foundation of their lifelong emotional health. These formative experiences are literally shaping the child’s brain, their expectations, and their view of the world and their place in it. In Alone Together, Turkle asks: What are we saying to children about their importance to us when we’re willing to outsource their care to a robot? A child might be superficially entertained by the robot while his self-esteem is systematically undermined.
Research has emerged showing that there are clear downsides to child-robot relationships.
Still, in the case of robot nannies in the home, is active, playful engagement with a robot for a few hours a day any more harmful than several hours in front of a TV or with an iPad? Some, like Xiong, regard interacting with a robot as better than mere passive entertainment. iPal’s manufacturers say that their robot can’t replace parents or teachers and is best used by three- to eight-year-olds after school, while they wait for their parents to get off work. But as robots become ever-more sophisticated, they’re expected to perform more of the tasks of day-to-day care and to be much more emotionally advanced. There is no question children will form deep attachments to some of them. And research has emerged showing that there are clear downsides to child-robot relationships.
Some studies, performed by Turkle and fellow MIT colleague Cynthia Breazeal, have revealed a darker side to the child-robot bond. Turkle has reported extensively on these studies in The Washington Post and in her book Alone Together. Most children love robots, but some act out their inner bully on the hapless machines, hitting and kicking them and otherwise trying to hurt them. The trouble is that the robot can’t fight back, teaching children that they can bully and abuse without consequences. As in any other robot relationship, such harmful behavior could carry over into the child’s human relationships.
And, ironically, it turns out that communicative machines don’t actually teach kids good communication skills. It’s well known that parent-child communication in the first three years of life sets the stage for a very young child’s intellectual and academic success. Verbal back-and-forth with parents and care-givers is like fuel for a child’s growing brain. One article that examined several types of play and their effect on children’s communication skills, published in JAMA Pediatrics in 2015, showed that babies who played with electronic toys—like the popular robot dog Aibo—show a decrease in both the quantity and quality of their language skills.
Anna V. Sosa of the Child Speech and Language Lab at Northern Arizona University studied twenty-six ten- to sixteen- month-old infants to compare the growth of their language skills after they played with three types of toys: electronic toys like a baby laptop and talking farm; traditional toys like wooden puzzles and building blocks; and books read aloud by their parents. The play that produced the most growth in verbal ability was having books read to them by a caregiver, followed by play with traditional toys. Language gains after playing with electronic toys came dead last. This form of play involved the least use of adult words, the least conversational turntaking, and the least verbalizations from the children. While the study sample was small, it’s not hard to extrapolate that no electronic toy or even more abled robot could supply the intimate responsiveness of a parent reading stories to a child, explaining new words, answering the child’s questions, and modeling the kind of back- and-forth interaction that promotes empathy and reciprocity in relationships.
***
Most experts acknowledge that robots can be valuable educational tools. But they can’t make a child feel truly loved, validated, and valued. That’s the job of parents, and when parents abdicate this responsibility, it’s not only the child who misses out on one of life’s most profound experiences.
We really don’t know how the tech-savvy children of today will ultimately process their attachments to robots and whether they will be excessively predisposed to choosing robot companionship over that of humans. It’s possible their techno literacy will draw for them a bold line between real life and a quasi-imaginary history with a robot. But it will be decades before we see long-term studies culminating in sufficient data to help scientists, and the rest of us, to parse out the effects of a lifetime spent with robots.
This is an excerpt from ROBOTS AND THE PEOPLE WHO LOVE THEM: Holding on to Our Humanity in an Age of Social Robots by Eve Herold. The book will be published on January 9, 2024.
Story by Big Think
In rare cases, a woman’s heart can start to fail in the months before or after giving birth. The all-important muscle weakens as its chambers enlarge, reducing the amount of blood pumped with each beat. Peripartum cardiomyopathy can threaten the lives of both mother and child. Viral illness, nutritional deficiency, the bodily stress of pregnancy, or an abnormal immune response could all play a role, but the causes aren’t concretely known.
If there is a silver lining to peripartum cardiomyopathy, it’s that it is perhaps the most survivable form of heart failure. A remarkable 50% of women recover spontaneously. And there’s an even more remarkable explanation for that glowing statistic: The fetus‘ stem cells migrate to the heart and regenerate the beleaguered muscle. In essence, the developing or recently born child saves its mother’s life.
Saving mama
While this process has not been observed directly in humans, it has been witnessed in mice. In a 2015 study, researchers tracked stem cells from fetal mice as they traveled to mothers’ damaged cardiac cells and integrated themselves into hearts.
Evolutionarily, this function makes sense: It is in the fetus’ best interest that its mother remains healthy.
Scientists also have spotted cells from the fetus within the hearts of human mothers, as well as countless other places inside the body, including the skin, spleen, liver, brain, lung, kidney, thyroid, lymph nodes, salivary glands, gallbladder, and intestine. These cells essentially get everywhere. While most are eliminated by the immune system during pregnancy, some can persist for an incredibly long time — up to three decades after childbirth.
This integration of the fetus’ cells into the mother’s body has been given a name: fetal microchimerism. The process appears to start between the fourth and sixth week of gestation in humans. Scientists are actively trying to suss out its purpose. Fetal stem cells, which can differentiate into all sorts of specialized cells, appear to target areas of injury. So their role in healing seems apparent. Evolutionarily, this function makes sense: It is in the fetus’ best interest that its mother remains healthy.
Sending cells into the mother’s body may also prime her immune system to grow more tolerant of the developing fetus. Successful pregnancy requires that the immune system not see the fetus as an interloper and thus dispatch cells to attack it.
Fetal microchimerism
But fetal microchimerism might not be entirely beneficial. Greater concentrations of the cells have been associated with various autoimmune diseases such as lupus, Sjogren’s syndrome, and even multiple sclerosis. After all, they are foreign cells living in the mother’s body, so it’s possible that they might trigger subtle, yet constant inflammation. Fetal cells also have been linked to cancer, although it isn’t clear whether they abet or hinder the disease.
A team of Spanish scientists summarized the apparent give and take of fetal microchimerism in a 2022 review article. “On the one hand, fetal microchimerism could be a source of progenitor cells with a beneficial effect on the mother’s health by intervening in tissue repair, angiogenesis, or neurogenesis. On the other hand, fetal microchimerism might have a detrimental function by activating the immune response and contributing to autoimmune diseases,” they wrote.
Regardless of a fetus’ cells net effect, their existence alone is intriguing. In a paper published earlier this year, University of London biologist Francisco Úbeda and University of Western Ontario mathematical biologist Geoff Wild noted that these cells might very well persist within mothers for life.
“Therefore, throughout their reproductive lives, mothers accumulate fetal cells from each of their past pregnancies including those resulting in miscarriages. Furthermore, mothers inherit, from their own mothers, a pool of cells contributed by all fetuses carried by their mothers, often referred to as grandmaternal microchimerism.”
So every mother may carry within her literal pieces of her ancestors.