Your Prescription Is Ready for Download
You may be familiar with Moore's Law, the prediction made by Intel co-founder Gordon Moore that computer chips would get faster and cheaper with each passing year. That's been borne out by the explosive growth of the tech industry, but you may not know that there is an inverse Moore's Law for drug development.
What if there were a way to apply the fast-moving, low-cost techniques of software development to drug discovery?
Eroom's Law—yes that's "Moore" spelled backward—is the observation that drug discovery has become slower and more expensive over time, despite technological improvements. And just like Moore's Law, it's been borne out by experience—from the 1950s to today, the number of drugs that can be developed per billion dollars in spending has steadily decreased, contributing to the continued growth of health care costs.
But what if there were a way to apply the fast-moving, low-cost techniques of software development to drug discovery? That's what a group of startups in the new field of digital therapeutics are promising. They develop apps that are used—either on their own or in conjunction with conventional drugs—to treat chronic disorders like addiction, diabetes and mental health that have so far resisted a pharmaceutical approach. Unlike the thousands of wellness and health apps that can be downloaded to your phone, digital therapeutics are developed and are meant to be used like drugs, complete with clinical trials, FDA approval and doctor prescriptions.
The field is hot—in 2017 global investment in digital therapeutics jumped to $11.5 billion, a fivefold increase from 2012, and major pharma companies like Novartis are developing their own digital products or partnering with startups. One such startup is the bicoastal Pear Therapeutics. Last month, Pear's reSET-O product became the first digital therapeutic to be approved for use by the millions of Americans who struggle with opioid use disorder, and the company has other products addressing addiction and mental illness in the pipeline.
I spoke with Dr. Corey McCann, Pear's CEO, about the company's efforts to meld software and medicine, designing clinical trials for an entirely new kind of treatment, and the future of digital therapeutics.
The interview has been edited and condensed for clarity and length.
"We're looking at conditions that currently can't be cured with drugs."
BRYAN WALSH: What makes a digital therapeutic different than a wellness app?
COREY MCCANN: What we do is develop therapeutics that are designed to be used under the auspices of a physician, just as a drug developed under good manufacturing would be. We do clinical studies for both safety and efficacy, and then they go through the development process you'd expect for a drug. We look at the commercial side, at the role of doctors. Everything we do is what would be done with a traditional medical product. It's a piece of software developed like a drug.
WALSH: What kind of conditions are you first aiming to treat with digital therapeutics?
MCCANN: We're looking at conditions that currently can't be cured with drugs. A good example is our reSET product, which is designed to treat addiction to alcohol, cannabis, stimulants, cocaine. There really aren't pharmaceutical products that are approved to treat people addicted to these substances. What we're doing is functional therapy, the standard of care for addiction treatment, but delivered via software. But we can also work with medication—our reSET-O product is a great example. It's for patients struggling with opioid addiction, and it's delivered in concert with the drug buprenorphine.
WALSH: Walk me through what the patient experience would be like for someone on a digital therapeutic like reSET.
MCCANN: Imagine you're a patient who has been diagnosed with cocaine addiction by a doctor. You would then receive a prescription for reSET during the same office visit. Instead of a pharmacy, the script is sent to the reSET Connect Patient Service Center, where you are onboarded and given an access code that is used to unlock the product after downloading it onto your device. The product has 60 different modules—each one requiring about a 10 to 15-minute interaction—all derived from a form of cognitive behavioral therapy called community reinforcement approach. The treatment takes place over 90 days.
"The patients receiving the digital therapeutic were more than twice as likely to remain abstinent as those receiving standard care."
Patients report their substance abuse, cravings and triggers, and they are also tested on core proficiencies through the therapy. Physicians have access to all of their data, which helps facilitate their one-on-one meetings. We know from regular urine tests how effective the treatment is.
WALSH: What kind of data did you find when you did clinical studies on reSET?
MCCANN: We had 399 patients in 10 centers taking part in a randomized clinical trial run by the National Institute on Drug Abuse. Every patient enrolled in the study had an active substance abuse disorder. The study was randomized so that patients either received the best current standard of care, which is three hours a week of face-to-face therapy, or they received the digital therapeutic. The primary endpoint was abstinence in weeks 9 to 12—if the patient had a single dirty urine screen in the last month, they counted as a failure.
In the end, the patients receiving the digital therapeutic were more than twice as likely to remain abstinent as those receiving standard care—40 percent versus 17 percent. Those receiving reSET were also much more likely to remain in treatment through the entire trial.
WALSH: Why start by focusing your first digital therapeutics on addiction?
MCCANN: We have tried to build a company that is poised to make a difference in medicine. If you look at addiction, there is little to nothing in the drug pipeline to address this. More than 30 million people in the U.S. suffer from addiction disorders, and not only is efficacy a concern, but so is access. Many patients aren't able to receive anything like the kind of face-to-face therapy our control group received. So we think digital therapeutics can make a difference there as well.
WALSH: reSET was the first digital therapeutic approved by the FDA to treat a specific disorder. What has the approval process been like?
MCCANN: It's been a learning process for all involved, including the FDA. Our philosophy is to work within the clinical trials structure, which has specific disease targets and endpoints, and develop quality software, and bring those two strands together to generate digital therapeutics. We now have two products that have been FDA-approved, and four more in development. The FDA is appropriately cautious about all of this, balancing the tradeoff between patient risk and medical value. As we see it, our company is half tech and half biotech, and we follow regulatory trials that are as rigorous as they would be with any drug company.
"This is a new space, but when you look back in 10 years there will be an entire industry of prescription digital therapeutics."
WALSH: How do you balance those two halves, the tech side and the biology side? Tech companies are known for iterating rapidly and cheaply, while pharma companies develop drugs slowly and expensively.
MCCANN: This is a new space, but when you look back in 10 years there will be an entire industry of prescription digital therapeutics. Right now for us we're combining the rigor of the pharmaceutical model with the speed and agility of a tech company. Our product takes longer to develop than an unverified health app, but less time and with less clinical risk than a new molecular entity. This is still a work in progress and not a day goes by where we don't notice the difference between those disciplines.
WALSH: Who's going to pay for these treatments? Insurers are traditionally slow to accept new innovations in the therapeutic space.
MCCANN: This is just like any drug launch. We need to show medical quality and value, and we need to get clinician demand. We want to focus on demonstrating as many scripts as we can in 2019. And we know we'll need to be persistent—we live in a world where payers will say no to anything three times before they say yes. Demonstrating value is how you get there.
WALSH: Is part of that value the possibility that digital therapeutics could be much cheaper than paying someone for multiple face-to-face therapy sessions?
MCCANN: I believe the cost model is very compelling here, especially when you can treat diseases that were not treatable before. That is something that creates medical value. Then you have the data aspect, which makes our product fundamentally different from a drug. We know everything about every patient that uses our product. We know engagement, we can push patient self-reports to clinicians. We can measure efficiency out in the real world, not just in a measured clinical trial. That is the holy grail in the pharma world—to understand compliance in practice.
WALSH: What's the future of digital therapeutics?
MCCANN: In 10 years, what we think of as digital medicine will just be medicine. This is something that will absolutely become standard of care. We are working on education to help partners and payers figure out where go from here, and to incorporate digital therapeutics into standard care. It will start in 2019 and 2020 with addiction medicine, and then in three to five years you'll see treatments designed to address disorders of the brain. And then past the decade horizon you'll see plenty of products that aim at every facet of medicine.
Scientists implant brain cells to counter Parkinson's disease
Martin Taylor was only 32 when he was diagnosed with Parkinson's, a disease that causes tremors, stiff muscles and slow physical movement - symptoms that steadily get worse as time goes on.
“It's horrible having Parkinson's,” says Taylor, a data analyst, now 41. “It limits my ability to be the dad and husband that I want to be in many cruel and debilitating ways.”
Today, more than 10 million people worldwide live with Parkinson's. Most are diagnosed when they're considerably older than Taylor, after age 60. Although recent research has called into question certain aspects of the disease’s origins, Parkinson’s eventually kills the nerve cells in the brain that produce dopamine, a signaling chemical that carries messages around the body to control movement. Many patients have lost 60 to 80 percent of these cells by the time they are diagnosed.
For years, there's been little improvement in the standard treatment. Patients are typically given the drug levodopa, a chemical that's absorbed by the brain’s nerve cells, or neurons, and converted into dopamine. This drug addresses the symptoms but has no impact on the course of the disease as patients continue to lose dopamine producing neurons. Eventually, the treatment stops working effectively.
BlueRock Therapeutics, a cell therapy company based in Massachusetts, is taking a different approach by focusing on the use of stem cells, which can divide into and generate new specialized cells. The company makes the dopamine-producing cells that patients have lost and inserts these cells into patients' brains. “We have a disease with a high unmet need,” says Ahmed Enayetallah, the senior vice president and head of development at BlueRock. “We know [which] cells…are lost to the disease, and we can make them. So it really came together to use stem cells in Parkinson's.”
In a phase 1 research trial announced late last month, patients reported that their symptoms had improved after a year of treatment. Brain scans also showed an increased number of neurons generating dopamine in patients’ brains.
Increases in dopamine signals
The recent phase 1 trial focused on deploying BlueRock’s cell therapy, called bemdaneprocel, to treat 12 patients suffering from Parkinson’s. The team developed the new nerve cells and implanted them into specific locations on each side of the patient's brain through two small holes in the skull made by a neurosurgeon. “We implant cells into the places in the brain where we think they have the potential to reform the neural networks that are lost to Parkinson's disease,” Enayetallah says. The goal is to restore motor function to patients over the long-term.
Five patients were given a relatively low dose of cells while seven got higher doses. Specialized brain scans showed evidence that the transplanted cells had survived, increasing the overall number of dopamine producing cells. The team compared the baseline number of these cells before surgery to the levels one year later. “The scans tell us there is evidence of increased dopamine signals in the part of the brain affected by Parkinson's,” Enayetallah says. “Normally you’d expect the signal to go down in untreated Parkinson’s patients.”
"I think it has a real chance to reverse motor symptoms, essentially replacing a missing part," says Tilo Kunath, a professor of regenerative neurobiology at the University of Edinburgh.
The team also asked patients to use a specific type of home diary to log the times when symptoms were well controlled and when they prevented normal activity. After a year of treatment, patients taking the higher dose reported symptoms were under control for an average of 2.16 hours per day above their baselines. At the smaller dose, these improvements were significantly lower, 0.72 hours per day. The higher-dose patients reported a corresponding decrease in the amount of time when symptoms were uncontrolled, by an average of 1.91 hours, compared to 0.75 hours for the lower dose. The trial was safe, and patients tolerated the year of immunosuppression needed to make sure their bodies could handle the foreign cells.
Claire Bale, the associate director of research at Parkinson's U.K., sees the promise of BlueRock's approach, while noting the need for more research on a possible placebo effect. The trial participants knew they were getting the active treatment, and placebo effects are known to be a potential factor in Parkinson’s research. Even so, “The results indicate that this therapy produces improvements in symptoms for Parkinson's, which is very encouraging,” Bale says.
Tilo Kunath, a professor of regenerative neurobiology at the University of Edinburgh, also finds the results intriguing. “I think it's excellent,” he says. “I think it has a real chance to reverse motor symptoms, essentially replacing a missing part.” However, it could take time for this therapy to become widely available, Kunath says, and patients in the late stages of the disease may not benefit as much. “Data from cell transplantation with fetal tissue in the 1980s and 90s show that cells did not survive well and release dopamine in these [late-stage] patients.”
Searching for the right approach
There's a long history of using cell therapy as a treatment for Parkinson's. About four decades ago, scientists at the University of Lund in Sweden developed a method in which they transferred parts of fetal brain tissue to patients with Parkinson's so that their nerve cells would produce dopamine. Many benefited, and some were able to stop their medication. However, the use of fetal tissue was highly controversial at that time, and the tissues were difficult to obtain. Later trials in the U.S. showed that people benefited only if a significant amount of the tissue was used, and several patients experienced side effects. Eventually, the work lost momentum.
“Like many in the community, I'm aware of the long history of cell therapy,” says Taylor, the patient living with Parkinson's. “They've long had that cure over the horizon.”
In 2000, Lorenz Studer led a team at the Memorial Sloan Kettering Centre, in New York, to find the chemical signals needed to get stem cells to differentiate into cells that release dopamine. Back then, the team managed to make cells that produced some dopamine, but they led to only limited improvements in animals. About a decade later, in 2011, Studer and his team found the specific signals needed to guide embryonic cells to become the right kind of dopamine producing cells. Their experiments in mice, rats and monkeys showed that their implanted cells had a significant impact, restoring lost movement.
Studer then co-founded BlueRock Therapeutics in 2016. Forming the most effective stem cells has been one of the biggest challenges, says Enayetallah, the BlueRock VP. “It's taken a lot of effort and investment to manufacture and make the cells at the right scale under the right conditions.” The team is now using cells that were first isolated in 1998 at the University of Wisconsin, a major advantage because they’re available in a virtually unlimited supply.
Other efforts underway
In the past several years, University of Lund researchers have begun to collaborate with the University of Cambridge on a project to use embryonic stem cells, similar to BlueRock’s approach. They began clinical trials this year.
A company in Japan called Sumitomo is using a different strategy; instead of stem cells from embryos, they’re reprogramming adults' blood or skin cells into induced pluripotent stem cells - meaning they can turn into any cell type - and then directing them into dopamine producing neurons. Although Sumitomo started clinical trials earlier than BlueRock, they haven’t yet revealed any results.
“It's a rapidly evolving field,” says Emma Lane, a pharmacologist at the University of Cardiff who researches clinical interventions for Parkinson’s. “But BlueRock’s trial is the first full phase 1 trial to report such positive findings with stem cell based therapies.” The company’s upcoming phase 2 research will be critical to show how effectively the therapy can improve disease symptoms, she added.
The cure over the horizon
BlueRock will continue to look at data from patients in the phase 1 trial to monitor the treatment’s effects over a two-year period. Meanwhile, the team is planning the phase 2 trial with more participants, including a placebo group.
For patients with Parkinson’s like Martin Taylor, the therapy offers some hope, though Taylor recognizes that more research is needed.
BlueRock Therapeutics
“Like many in the community, I'm aware of the long history of cell therapy,” he says. “They've long had that cure over the horizon.” His expectations are somewhat guarded, he says, but, “it's certainly positive to see…movement in the field again.”
"If we can demonstrate what we’re seeing today in a more robust study, that would be great,” Enayetallah says. “At the end of the day, we want to address that unmet need in a field that's been waiting for a long time.”
Editor's note: The company featured in this piece, BlueRock Therapeutics, is a portfolio company of Leaps by Bayer, which is a sponsor of Leaps.org. BlueRock was acquired by Bayer Pharmaceuticals in 2019. Leaps by Bayer and other sponsors have never exerted influence over Leaps.org content or contributors.
Scientists experiment with burning iron as a fuel source
Story by Freethink
Try burning an iron metal ingot and you’ll have to wait a long time — but grind it into a powder and it will readily burst into flames. That’s how sparklers work: metal dust burning in a beautiful display of light and heat. But could we burn iron for more than fun? Could this simple material become a cheap, clean, carbon-free fuel?
In new experiments — conducted on rockets, in microgravity — Canadian and Dutch researchers are looking at ways of boosting the efficiency of burning iron, with a view to turning this abundant material — the fourth most common in the Earth’s crust, about about 5% of its mass — into an alternative energy source.
Iron as a fuel
Iron is abundantly available and cheap. More importantly, the byproduct of burning iron is rust (iron oxide), a solid material that is easy to collect and recycle. Neither burning iron nor converting its oxide back produces any carbon in the process.
Iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again.
Iron has a high energy density: it requires almost the same volume as gasoline to produce the same amount of energy. However, iron has poor specific energy: it’s a lot heavier than gas to produce the same amount of energy. (Think of picking up a jug of gasoline, and then imagine trying to pick up a similar sized chunk of iron.) Therefore, its weight is prohibitive for many applications. Burning iron to run a car isn’t very practical if the iron fuel weighs as much as the car itself.
In its powdered form, however, iron offers more promise as a high-density energy carrier or storage system. Iron-burning furnaces could provide direct heat for industry, home heating, or to generate electricity.
Plus, iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again (as long as you’ve got a source of clean electricity or green hydrogen). When there’s excess electricity available from renewables like solar and wind, for example, rust could be converted back into iron powder, and then burned on demand to release that energy again.
However, these methods of recycling rust are very energy intensive and inefficient, currently, so improvements to the efficiency of burning iron itself may be crucial to making such a circular system viable.
The science of discrete burning
Powdered particles have a high surface area to volume ratio, which means it is easier to ignite them. This is true for metals as well.
Under the right circumstances, powdered iron can burn in a manner known as discrete burning. In its most ideal form, the flame completely consumes one particle before the heat radiating from it combusts other particles in its vicinity. By studying this process, researchers can better understand and model how iron combusts, allowing them to design better iron-burning furnaces.
Discrete burning is difficult to achieve on Earth. Perfect discrete burning requires a specific particle density and oxygen concentration. When the particles are too close and compacted, the fire jumps to neighboring particles before fully consuming a particle, resulting in a more chaotic and less controlled burn.
Presently, the rate at which powdered iron particles burn or how they release heat in different conditions is poorly understood. This hinders the development of technologies to efficiently utilize iron as a large-scale fuel.
Burning metal in microgravity
In April, the European Space Agency (ESA) launched a suborbital “sounding” rocket, carrying three experimental setups. As the rocket traced its parabolic trajectory through the atmosphere, the experiments got a few minutes in free fall, simulating microgravity.
One of the experiments on this mission studied how iron powder burns in the absence of gravity.
In microgravity, particles float in a more uniformly distributed cloud. This allows researchers to model the flow of iron particles and how a flame propagates through a cloud of iron particles in different oxygen concentrations.
Existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
Insights into how flames propagate through iron powder under different conditions could help design much more efficient iron-burning furnaces.
Clean and carbon-free energy on Earth
Various businesses are looking at ways to incorporate iron fuels into their processes. In particular, it could serve as a cleaner way to supply industrial heat by burning iron to heat water.
For example, Dutch brewery Swinkels Family Brewers, in collaboration with the Eindhoven University of Technology, switched to iron fuel as the heat source to power its brewing process, accounting for 15 million glasses of beer annually. Dutch startup RIFT is running proof-of-concept iron fuel power plants in Helmond and Arnhem.
As researchers continue to improve the efficiency of burning iron, its applicability will extend to other use cases as well. But is the infrastructure in place for this transition?
Often, the transition to new energy sources is slowed by the need to create new infrastructure to utilize them. Fortunately, this isn’t the case with switching from fossil fuels to iron. Since the ideal temperature to burn iron is similar to that for hydrocarbons, existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.