Advances Bring First True Hope to Spinal Cord Injury Patients
Seven years ago, mountain biking near his home in Whitefish, Montana, Jeff Marquis felt confident enough to try for a jump he usually avoided. But he hesitated just a bit as he was going over. Instead of catching air, Marquis crashed.
Researchers' major new insight is that recovery is still possible, even years after an injury.
After 18 days on a ventilator in intensive care and two-and-a-half months in a rehabilitation hospital, Marquis was able to move his arms and wrists, but not his fingers or anything below his chest. Still, he was determined to remain as independent as possible. "I wasn't real interested in having people take care of me," says Marquis, now 35. So, he dedicated the energy he formerly spent biking, kayaking, and snowboarding toward recovering his own mobility.
For generations, those like Marquis with severe spinal cord injuries dreamt of standing and walking again – with no realistic hope of achieving these dreams. But now, a handful of people with such injuries, including Marquis, have stood on their own and begun to learn to take steps again. "I'm always trying to improve the situation but I'm happy with where I'm at," Marquis says.
The recovery Marquis and a few of his fellow patients have achieved proves that our decades-old understanding of the spinal cord was wrong. Researchers' major new insight is that recovery is still possible, even years after an injury. Only a few thousand nerve cells actually die when the spinal cord is injured. The other neurons still have the ability to generate signals and movement on their own, says Susan Harkema, co-principal investigator at the Kentucky Spinal Cord Injury Research Center, where Marquis is being treated.
"The spinal cord has much more responsibility for executing movement than we thought before," Harkema says. "Successful movement can happen without those connections from the brain." Nerve cell circuits remaining after the injury can control movement, she says, but leaving people sitting in a wheelchair doesn't activate those sensory circuits. "When you sit down, you lose all the sensory information. The whole circuitry starts discombobulating."
Harkema and others use a two-pronged approach – both physical rehabilitation and electrical stimulation – to get those spinal cord circuits back into a functioning state. Several research groups are still honing this approach, but a few patients have already taken steps under their own power, and others, like Marquis, can now stand unassisted – both of which were merely fantasies for spinal cord injury patients just five years ago.
"This really does represent a leap forward in terms of how we think about the capacity of the spinal cord to be repaired after injury," says Susan Howley, executive vice president for research for the Christopher & Dana Reeve Foundation, which supports research for spinal cord injuries.
Jeff Marquis biking on a rock before his accident.
This new biological understanding suggests the need for a wholesale change in how people are treated after a spinal cord injury, Howley says. But today, most insurance companies cover just 30-40 outpatient rehabilitation sessions per year, whether you've sprained your ankle or severed your spinal cord. To deliver the kind of therapy that really makes a difference for spinal cord injury patients requires "60-80-90 or 150 sessions," she says, adding that she thinks insurance companies will more than make up for the cost of those therapy sessions if spinal cord injury patients are healthier. Early evidence suggests that getting people back on their feet helps prevent medical problems common among paralyzed people, including urinary tract infections, which can require costly hospital stays.
"Exercise and the ability to fully bear one's own weight are as crucial for people who live with paralysis as they are for able-bodied people," Howley notes, adding that the Reeve Foundation is now trying to expand the network of facilities available in local communities to offer this essential rehabilitation.
"Providing the right kind of training every day to people could really improve their opportunity to recover," Harkema says.
It's not entirely clear yet how far someone could progress with rehabilitation alone, Harkema says, but probably the best results for someone with a severe injury will also require so-called epidural electrical stimulation. This device, implanted in the lower back for a cost of about $30,000, sends an electrical current at varying frequencies and intensities to the spinal cord. Several separate teams of researchers have now shown that epidural stimulation can help restore sensation and movement to people who have been paralyzed for years.
Epidural stimulation boosts the electrical signal that is generated below the point of injury, says Daniel Lu, an associate professor and vice chair of neurosurgery at the UCLA School of Medicine. Before a spinal cord injury, he says, a neuron might send a message at a volume of 10 but after injury, that volume might drop to a two or three. The epidural stimulation potentially trains the neuron to respond to the lower volume, Lu says.
Lu has used such stimulators to improve hand function – "essentially what defines us" – in two patients with spinal cord injuries. Both increased their grip strength so they now can lift a cup to drink by themselves, which they couldn't do before. He's also used non-invasive stimulation to help restore bladder function, which he says many spinal cord injury patients care about as much as walking again.
A closeup of the stimulator.
Not everyone will benefit from these treatments. People whose injury was caused by a cut to the spinal cord, as with a knife or bullet, probably can't be helped, Lu says, adding that they account for less than 5 percent of spinal cord injuries.
The current challenge Lu says is not how to stimulate the spinal cord, but where to stimulate it and the frequency of stimulation that will be most effective for each patient. Right now, doctors use an off-the-shelf stimulator that is used to treat pain and is not optimized for spinal cord patients, Harkema says.
Swiss researchers have shown impressive results from intermittent rather than continuous epidural stimulation. These pulses better reflect the way the brain sends its messages, according to Gregoire Courtine, the senior author on a pair of papers published Nov. 1 in Nature and Nature Neuroscience. He showed that he could get people up and moving within just a few days of turning on the stimulation. Three of his patients are walking again with only a walker or minimal assistance, and they also gained voluntary leg movements even when the stimulator was off. Continuous stimulation, this research shows, actually interferes with the patients' perception of limb position, and thus makes it harder for them to relearn to walk.
Even short of walking, proper physical rehabilitation and electrical stimulation can transform the quality of life of people with spinal cord injury, Howley and Harkema say. Patients don't need to be able to reach the top shelf or run a marathon to feel like they've been "cured" from their paralysis. Instead, recovering bowel, bladder and sexual functions, the ability to regulate their temperature and blood pressure, and reducing the breakdown of skin that can lead to a life-threatening infection can all be transformative – and all appear to improve with the combination of rehabilitation and electrical stimulation.
Howley cites a video of one of Harkema's patients, Stefanie Putnam, who was passing out five to six times a day because her blood pressure was so low. She couldn't be left alone, which meant she had no independence. After several months of rehabilitation and stimulation, she can now sit up for long periods, be left alone, and even, she says gleefully, cook her own dinner. "Every time I watch it, it brings me to tears," Howley says of the video. "She's able to resume her normal life activity. It's mind-boggling."
The work also suggests a transformation in the care of people immediately after injury. They should be allowed to stand and start taking steps as soon as possible, even if they cannot do it under their own power, Harkema says. Research is also likely to show that quickly implanting a stimulator after an injury will make a difference, she says.
There may be medications that can help immediately after an injury, too. One drug currently being studied, called riluzole, has already been approved for ALS and might help limit the damage of a spinal cord injury, Howley says. But testing its effectiveness has been a slow process, she says, because it needs to be given within 12 hours of the initial injury and not enough people get to the testing sites in time.
Stem cell therapy also offers promise for spinal cord injury patients, Howley says – but not the treatments currently provided by commercial stem cell clinics both in the U.S. and overseas, which she says are a sham. Instead, she is carefully following research by a California-based company called Asterias Biotherapeutics, which announced plans Nov. 8 to merge with a company called BioTime.
Asterias and a predecessor company have been treating people since 2010 in an effort to regrow nerves in the spinal cord. All those treated have safely tolerated the cells, but not everyone has seen a huge improvement, says Edward Wirth, who has led the trial work and is Asterias' chief medical director. He says he thinks he knows what's held back those who didn't improve much, and hopes to address those issues in the next 3- to 4-year-long trial, which he's now discussing with the U.S. Food and Drug Administration.
So far, he says, some patients have had an almost complete return of movement in their hands and arms, but little improvement in their legs. The stem cells seem to stimulate tissue repair and regeneration, he says, but only around the level of the injury in the spinal cord and a bit below. The legs, he says, are too far away to benefit.
Wirth says he thinks a combination of treatments – stem cells, electrical stimulation, rehabilitation, and improved care immediately after an injury – will likely produce the best results.
While there's still a long way to go to scale these advances to help the majority of the 300,000 spinal cord injury patients in the U.S., they now have something that's long been elusive: hope.
"Two or three decades ago there was no hope at all," Howley says. "We've come a long way."
Few things are more painful than a urinary tract infection (UTI). Common in men and women, these infections account for more than 8 million trips to the doctor each year and can cause an array of uncomfortable symptoms, from a burning feeling during urination to fever, vomiting, and chills. For an unlucky few, UTIs can be chronic—meaning that, despite treatment, they just keep coming back.
But new research, presented at the European Association of Urology (EAU) Congress in Paris this week, brings some hope to people who suffer from UTIs.
Clinicians from the Royal Berkshire Hospital presented the results of a long-term, nine-year clinical trial where 89 men and women who suffered from recurrent UTIs were given an oral vaccine called MV140, designed to prevent the infections. Every day for three months, the participants were given two sprays of the vaccine (flavored to taste like pineapple) and then followed over the course of nine years. Clinicians analyzed medical records and asked the study participants about symptoms to check whether any experienced UTIs or had any adverse reactions from taking the vaccine.
The results showed that across nine years, 48 of the participants (about 54%) remained completely infection-free. On average, the study participants remained infection free for 54.7 months—four and a half years.
“While we need to be pragmatic, this vaccine is a potential breakthrough in preventing UTIs and could offer a safe and effective alternative to conventional treatments,” said Gernot Bonita, Professor of Urology at the Alta Bro Medical Centre for Urology in Switzerland, who is also the EAU Chairman of Guidelines on Urological Infections.
The news comes as a relief not only for people who suffer chronic UTIs, but also to doctors who have seen an uptick in antibiotic-resistant UTIs in the past several years. Because UTIs usually require antibiotics, patients run the risk of developing a resistance to the antibiotics, making infections more difficult to treat. A preventative vaccine could mean less infections, less antibiotics, and less drug resistance overall.
“Many of our participants told us that having the vaccine restored their quality of life,” said Dr. Bob Yang, Consultant Urologist at the Royal Berkshire NHS Foundation Trust, who helped lead the research. “While we’re yet to look at the effect of this vaccine in different patient groups, this follow-up data suggests it could be a game-changer for UTI prevention if it’s offered widely, reducing the need for antibiotic treatments.”
MILESTONE: Doctors have transplanted a pig organ into a human for the first time in history
Surgeons at Massachusetts General Hospital made history last week when they successfully transplanted a pig kidney into a human patient for the first time ever.
The recipient was a 62-year-old man named Richard Slayman who had been living with end-stage kidney disease caused by diabetes. While Slayman had received a kidney transplant in 2018 from a human donor, his diabetes ultimately caused the kidney to fail less than five years after the transplant. Slayman had undergone dialysis ever since—a procedure that uses an artificial kidney to remove waste products from a person’s blood when the kidneys are unable to—but the dialysis frequently caused blood clots and other complications that landed him in the hospital multiple times.
As a last resort, Slayman’s kidney specialist suggested a transplant using a pig kidney provided by eGenesis, a pharmaceutical company based in Cambridge, Mass. The highly experimental surgery was made possible with the Food and Drug Administration’s “compassionate use” initiative, which allows patients with life-threatening medical conditions access to experimental treatments.
The new frontier of organ donation
Like Slayman, more than 100,000 people are currently on the national organ transplant waiting list, and roughly 17 people die every day waiting for an available organ. To make up for the shortage of human organs, scientists have been experimenting for the past several decades with using organs from animals such as pigs—a new field of medicine known as xenotransplantation. But putting an animal organ into a human body is much more complicated than it might appear, experts say.
“The human immune system reacts incredibly violently to a pig organ, much more so than a human organ,” said Dr. Joren Madsen, director of the Mass General Transplant Center. Even with immunosuppressant drugs that suppress the body’s ability to reject the transplant organ, Madsen said, a human body would reject an animal organ “within minutes.”
So scientists have had to use gene-editing technology to change the animal organs so that they would work inside a human body. The pig kidney in Slayman’s surgery, for instance, had been genetically altered using CRISPR-Cas9 technology to remove harmful pig genes and add human ones. The kidney was also edited to remove pig viruses that could potentially infect a human after transplant.
With CRISPR technology, scientists have been able to prove that interspecies organ transplants are not only possible, but may be able to successfully work long term, too. In the past several years, scientists were able to transplant a pig kidney into a monkey and have the monkey survive for more than two years. More recently, doctors have transplanted pig hearts into human beings—though each recipient of a pig heart only managed to live a couple of months after the transplant. In one of the patients, researchers noted evidence of a pig virus in the man’s heart that had not been identified before the surgery and could be a possible explanation for his heart failure.
So far, so good
Slayman and his medical team ultimately decided to pursue the surgery—and the risk paid off. When the pig organ started producing urine at the end of the four-hour surgery, the entire operating room erupted in applause.
Slayman is currently receiving an infusion of immunosuppressant drugs to prevent the kidney from being rejected, while his doctors monitor the kidney’s function with frequent ultrasounds. Slayman is reported to be “recovering well” at Massachusetts General Hospital and is expected to be discharged within the next several days.