Award-Winning Scientists Offer Advice to President Biden
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
We invited Nobel Prize, National Medal of Science, and Breakthrough Prize Laureates working in America to offer advice to the next President on how to prioritize science and medicine in the next four years. Almost universally, these 28 letters underscore the importance of government support for basic or fundamental research to fuel long-term solutions to challenges like infectious diseases, climate change, and environmental preservation.
Many of these scientists are immigrants to the United States and emphasize how they moved to this country for its educational and scientific opportunities, which recently have been threatened by changes in visa policies for students and researchers from overseas. Many respondents emphasize the importance of training opportunities for scientists from diverse backgrounds to ensure that America can continue to have one of the strongest, most creative scientific workforces in the world.
Peter Agre, M.D.
2003 Nobel Laureate in Chemistry
David Baker, Ph.D.
2021 Breakthrough Prize in Life Sciences Laureate
Cori Bargmann, Ph.D.
2013 Breakthrough Prize in Life Sciences Laureate
Jacqueline K. Barton, Ph.D.
2010 National Medal of Science Laureate
Barry Barish, Ph.D.
2017 Nobel Laureate in Physics
May Berenbaum, Ph.D.
2012 National Medal of Science Laureate
Martin Chalfie, Ph.D.
2008 Nobel Laureate in Chemistry
Joanne Chory, Ph.D.
2018 Breakthrough Prize in Life Sciences Laureate
Nina Fedoroff, Ph.D.
2006 National Medal of Science Laureate
Andrew Z. Fire, Ph.D.
2006 Nobel Laureate for Physiology or Medicine
Joanna S. Fowler, Ph.D.
2008 National Medal of Science Laureate
Jeffrey Friedman, M.D., Ph.D.
2020 Breakthrough Prize in Life Sciences Laureate
Jerome I. Friedman, Ph.D.
1990 Nobel Laureate in Physics
Elaine Fuchs, Ph.D.
2008 National Medal of Science Laureate
H. Robert Horvitz, Ph.D.
2002 Nobel Laureate in Physiology or Medicine
David Julius, Ph.D.
2020 Breakthrough Prize in Life Sciences Laureate
William G. Kaelin, Jr., M.D.
2019 Nobel Laureate in Physiology or Medicine
Judith P. Klinman, Ph.D.
2012 National Medal of Science Laureate
J. Michael Kosterlitz, Ph.D.
2016 Nobel Laureate in Physics
Adrian R. Krainer, Ph.D.
2019 Breakthrough Prize in Life Sciences Laureate
John C. Mather, Ph.D.
2006 Nobel Laureate in Physics
Geraldine Richmond, Ph.D.
2013 National Medal of Science Laureate
Adam Riess, Ph.D.
2011 Nobel Laureate in Physics
Randy W. Schekman, Ph.D.
2013 Nobel Laureate in Physiology or Medicine
George F. Smoot, Ph.D.
2006 Nobel Laureate in Physics
Thomas C. Südhof, M.D.
2013 Nobel Laureate for Physiology or Medicine
Warren M. Washington, Ph.D.
2009 National Medal of Science Laureate
Carl Wieman, Ph.D.
2001 Nobel Laureate in Physics
Dear Mr. President:
- Bloomberg Distinguished Professor and Director
- Johns Hopkins Malaria Research Institute
- 2003 Nobel Laureate in Chemistry
Peter Agre, M.D.
2003 Nobel Laureate in Chemistry
David Baker, Ph.D.
- Henrietta and Aubrey Davis Endowed Professor in Biochemistry
- University of Washington
- Investigator, Howard Hughes Medical Institute
- 2021 Breakthrough Prize in Life Sciences Laureate
I encourage you most strongly to ramp up support for basic science research in the U.S.! Discoveries can have impact far beyond the original questions being investigated, as highlighted by the recent Nobel prizes for CRISPR/Cas9. In my own research area, investigation of the fundamental principles of protein folding led to our ability to use computers to rapidly design promising vaccine, therapeutic, and diagnostic candidates in the midst of the pandemic. I also encourage you to support work on general pandemic preparedness, as with increasing population density, new pathogen outbreaks are likely to continue, and having effective countermeasures in place would greatly reduce human suffering and economic damage.
- - - - - - - - -
Cori Bargmann, Ph.D.
- Torsten W. Wiesel Professor
- Rockefeller University
- Head of Science, Chan Zuckerberg Initiative
- 2013 Breakthrough Prize in Life Sciences Laureate
Find all the pathogens!
To prevent and manage infectious disease, the next administration should deploy the power of large-scale molecular analysis to build a new, shared infrastructure for public health.
Currently, we identify infectious agents—viruses, bacteria, parasites, fungi—one by one at the local level. Is norovirus causing gastrointestinal distress in preschool children? Does a hospital harbor antibiotic-resistant bacteria like MRSA? Is a nursing home incubating Candida auris, a fungal superbug? We shouldn't be asking these questions one at a time. Instead, deploying large-scale molecular analysis would allow an integrated public health system to monitor all infectious diseases in real time and share the data nationwide.
First, provide DNA sequencing capacity for all local and state public health systems. Rapid, inexpensive sequencing of infectious agents should be routine whenever an outbreak occurs in a workplace, hospital, school, or prison. It can be used to track spread between people, find contaminated environments, and identify sites where a swift intervention is needed. Routine sequencing of infectious agents enables a quick, effective, and targeted public health response.
Second, use molecular methods like PCR and sequencing to track disease-causing viruses, bacteria, parasites, or fungi nationwide. In a science-informed world, we should know exactly what's making us sick. This is not primarily a health-care issue: most of the time putting a name on the organism won't change treatment. It's a public health mission: to identify dangerous infectious agents early, while there's time to act. Most of the time a respiratory infection (for example) will harbor a common rhinovirus or influenza virus, but sometimes those will not be present. In those cases, the advanced DNA sequencing method called metagenomics can identify unexpected and even previously unknown organisms, like SARS-CoV-2 in 2019. By monitoring all infectious agents systematically, we can be aware of their prevalence, spread, and virulence, and we can be prepared before the next pandemic occurs.
Finally, we need a national public health data infrastructure to share all of this information—the sequence of the infectious agent, the location at which it was found, and the disease that it caused. A common, shared data system will let infectious disease experts find and stop the next outbreak that endangers us all.
- - - - - - - - -
Jacqueline K. Barton, Ph.D.
- John G. Kirkwood and Arthur A. Noyes Professor of Chemistry
- California Institute of Technology
- 2010 National Medal of Science Laureate
A critically important resource in America today is our scientific enterprise. We bring together the best and brightest and create new technologies, new medicines, new ways of living. Our scientific enterprise is critical to the health and growth of our economy, whether considering our energy industry, biotechnology, pharma, or computer technologies. And as we consider the great global challenges before us, climate change and global health, here, too, science holds the answers.
For more than fifty years, the U.S. has been the global center of scientific excellence. Our universities have provided the best in the world for research and exploration. And in contrast to universities elsewhere, our universities provide a structure that nurtures change. Assistant professors can start up their own labs, raise funds to support their new experiments, and discover quickly new ideas as to how the world works. Our industrial enterprise supports this same entrepreneurial approach to explore and develop. Small start-ups are incubators for transformative technologies. Moreover, collaboration, across disciplines and between industry and academe, allows a mixing of new ideas. And with federal support, both academic and industrial research can quickly yield new technologies and economic growth.
Science in the U.S. is therefore a unique and critical strength. Yet science is under attack. We have been able to attract the very best from across the globe to train here, to learn from the best and spread the word. This cross fertilization will not occur going forward if we squelch immigration and if we interfere with international collaboration. Moreover, research in our universities requires federal funding. Without support for basic research, where we are just learning the questions, let alone the answers, we can only make progress incrementally, and we cannot discover and develop new, transformative technologies.
U.S. science is a jewel. It needs your support.
- - - - - - - - -
Barry Barish, Ph.D.
- Linde Professor of Physics, Emeritus
- California Institute of Technology
- 2017 Nobel Laureate in Physics
I am writing to stress to the new administration that you will soon be faced with crucial policy issues that require good scientific input in formulating policy. At the top of list must be providing the leadership that will bring us out of the pandemic. In that regard, formulating consistent policy on social distancing, testing and tracing, and vaccines and distribution are all complex problems that need the best scientific inputs and advice.
A second issue of great importance to the world is nuclear proliferation. We must make viable agreements with other countries having nuclear capability, as well as agreements for Iran or other countries that could develop capability. Renewing the U.S. nuclear stockpile is a very complex domestic issue that again needs the best scientific guidance.
A third crucial issue is climate change. We have had unprecedented heat, melting ice caps, forest fires, polluted cities, etc. in the recent past. We must develop forward-looking and workable policy, working with the rest of the world and using the best advice of scientists.
Of course, there will be other major issues, where the advice of scientists will be crucial to decision making and formulating policies. The U.S. is a wonderful place to be a scientist and to do science. Please take advantage of our skills and knowledge as you face the challenges of the coming years.
- - - - - - - - -
May Berenbaum, Ph.D.
- Professor and Head of Entomology
- University of Illinois at Urbana–Champaign
- 2012 National Medal of Science Laureate
Congratulations on your election, during a moment in history when the health and well-being not only of the human population but also the biodiversity of the planet will almost certainly be affected by decisions you make while you're in office. For this reason, please depend on the knowledge that the scientific community can offer to inform your decision-making. In 1863, your predecessor Abraham Lincoln, recognizing the need for independent, objective advice for a nation embroiled in a civil war, created the National Academy of Sciences as a mechanism to obtain such advice. Scientists answered the call, advising the federal government on many scientific and technological issues, including consistency across weights and measures and accuracy of magnetic compass readings on iron-hulled warships. For over 150 years, the federal government has benefited from making decisions based on the best independent, objective scientific evidence available from a rapidly expanding community of scientists. Keep in mind, though, that scientific research comprises not just the knowledge produced, but also the process through which it's obtained, a process designed to be iterative, self-correcting, and objective. It's true that scientific views can change, sometimes rapidly—but such change is intrinsic to the process, as long as changes come not from whimsy or political stratagems, but from the collective accumulation of well-designed, unbiased, repeatable studies, particularly when new fields or unprecedented problems arise. The utility of relying on scientific advice in policy-making has been abundantly demonstrated, as have the often tragic consequences of rejecting a strong scientific consensus to suit political agendas (think of the deaths of millions resulting from the Soviet-era implementation of Trofim Lysenko's politically tinged agronomic theories). Like it or not, your legacy will depend on the extent to which you embrace both the process and the products of the scientific enterprise.
- - - - - - - - -
Martin Chalfie, Ph.D.
- University Professor of Biological Sciences
- Columbia University
- 2008 Nobel Laureate in Chemistry
I have never been prouder of the scientific enterprise than during the COVID-19 pandemic. Scientists, healthcare professionals, and others are devoting their knowledge and skills and often redirecting their research to solve the problems of SARS-CoV-2 and the destruction it is causing. These scientific efforts would not have been possible without our previous understanding of basic biological processes. This understanding is what allows people to sequence genomes, determine protein structures, develop novel ways of detecting and interfering with the virus, and understand how viruses take over cells and how the body responds to infection. As part of preparedness for the next health crisis, we must continue to build our scientific knowledge, because we do not know what we will need to know.
The astonishing response of the scientific community to this pandemic shows how much science can contribute and what it can accomplish. The question for the future is: how can we maintain our momentum? We can do so, first, by increasing the support for both fundamental and applied research, and we need to take a broad view of what to support. I received my Nobel Prize for my development of a method to watch cells work that was based on a jellyfish protein. Tens of thousands of research projects have utilized this protein to expand our understanding of basic biology and to study human disease. Second, we need to put more resources into educating future scientists. We must support and expand STEM programs in elementary and high schools, research opportunities for college students, and training programs for graduate students and postdoctoral researchers. And we must provide opportunities to increase diversity within the sciences, including encouraging and supporting the entry of underrepresented minorities and first-generation, low-income college students into careers in the sciences. Third, we should ensure that governmental decisions and administrative policies are based on strong scientific consensus and are not subjected to anti-science political pressure. We have a long tradition of the sciences and scientists helping our country. Indeed, in 1863 Abraham Lincoln helped found the U.S. National Academy of Sciences specifically to provide unbiased advice to the nation. To this day, the National Academies of Sciences, Engineering, and Medicine continue to do so. Their advice and that of the many conscientious and concerned scientists in our country should be heeded if we want to preserve our environment, improve the health of our population, and continue to reap the benefits that Science provides.
Finally, Mr. President, you have the important role of encouraging scientific excellence and recognizing scientific accomplishments, to spur others to make the discoveries so necessary for our future. For many years, the U.S. winners of the Nobel Prize have been invited to the White House and met with the President before going on to Sweden. Regrettably, these events have not occurred in the last four years. I encourage you to reinstate this very welcomed tradition. These meetings at the White House are the one time that the country, as represented by the President, thanks the Laureates for their achievements.
- - - - - - - - -
Joanne Chory, Ph.D.
- Professor and Director of the Plant Molecular and Cellular Biology Laboratory
- Howard H. and Maryam R. Newman Chair in Plant Biology
- Salk Institute for Biological Studies
- Investigator, Howard Hughes Medical Institute
- 2018 Breakthrough Prize in Life Sciences Laureate
Humanity is facing unprecedented challenges of a simultaneous and urgent nature rarely before seen in our history. A pandemic infection has brought the world's economy to its knees. Authoritarian assaults on democracy are increasing mistrust in governments and institutions. Global climate change is destabilizing lives and livelihoods. Now, more than ever, Americans and our allies are looking to the U.S. to lead the world through these monumental challenges.
Science and scholarship are the most powerful tools by which we may understand these challenges and how best to address them. The pursuit of truth, which is the bedrock of science and the linchpin of functioning democracy, must be our top priority for the next four years.
I urge you to commit to making evidence-based policy decisions, and to making science and foundational research your compass to help guide the world to a healthier, more stable future. It is not hyperbole to say humanity is at a crossroads, and that we face existential threats in the form of climate change and distrust of science.
Jonas Salk, who developed the first polio vaccine in response to the polio pandemics of the early 20th century before going on to found the Salk Institute for Biological Studies, once said, "Our greatest responsibility is to be good ancestors."
We owe future generations a healthy, habitable world.
- - - - - - - - -
Nina Fedoroff, Ph.D.
- Emeritus Evan Pugh Professor, Pennsylvania State University
- Senior Science Advisor, OFW Law
- 2006 National Medal of Science Laureate
I wish to draw your attention to a thorny issue whose impact on America will steadily grow in coming years as climate warming becomes ever more destructive to our food supply. I speak of the growing gap between what science can do to help agriculture and what's actually being done for farmers.
Spectacular advances in genetic knowledge and methods over the past half century have made it possible to adapt agriculture to a warming climate even while increasing agriculture's productivity and sustainability and reducing its environmental footprint.
But over the same half-century, public opinion has been systematically turned against the use of such modern methods of genetic modification (GM) by the organic food industry and public interest groups who have successfully vilified GM and created fear to increase their market share and raise money. A majority of consumers is now convinced that GM foods are bad or dangerous.
But the science says that GM foods are entirely safe for consumption by both people and animals. GM crops have now been grown commercially for a quarter of a century, boosting farmer incomes around the world, even while reducing pesticide use and greenhouse gas emissions. Unfortunately, current regulatory policy has all but precluded the rapid development of GM animals.
It is essential that the upcoming administration listen to the science and direct efforts toward relaxing excess regulatory constraints on GM. But more than that, it is essential that the government boldly promote GM approaches in agriculture to overcome the widespread disinformation promulgated by anti-GM groups. Public acceptance of GM foods is critical to their success in the marketplace.
Government investment can encourage private and public sector scientists to develop badly needed agricultural organisms biologically protected from the pathogens, pests, and stresses of the warming climate. But unequivocal government support of GM foods will be crucial to unleashing the scale of investment needed for farmers to stay ahead of the warming climate's growing downward pressure on their ability to feed the nation.
- - - - - - - - -
Andrew Z. Fire, Ph.D.
- Professor of Pathology and Genetics
- Stanford University School of Medicine
- 2006 Nobel Laureate for Physiology or Medicine
The next President of the United States can make the world a better place
But not alone. He or she will need to
Communicate with Americans
To know what is working in America
To know what needs to be fixed
To convey what people can do for their communities, their country, and their world
Communicate with scientists and experts
To understand what we have learned and what we can do
To understand the uncertainties in all science and technology
To understand what resources are needed to find and implement solutions
Engage beyond our borders
Because we share a fragile planet
The U.S. scientific community can make the world a better place
But not alone. We will need to
Listen to communities across the US to know where knowledge and solutions are needed.
Carefully and clearly convey facts and consequences in areas where we know.
Debate and unashamedly convey uncertainties and areas where we don't know.
Continue to engage with other scientists here and elsewhere to develop new approaches and understanding
Train a new generation of scientists to address current and future challenges
The American People can make the world a better place
But not alone. We will need to
Convey to leaders and scientists what is working and what needs to be fixed.
Educate ourselves in a broad range of science to make rational decisions
Participate in dialog toward designing solutions that improve life for everyone
Work together and listen with each other and with the world.
- - - - - - - - -
Joanna S. Fowler, Ph.D.
- Senior Scientist Emeritus
- Brookhaven National Laboratory
- 2008 National Medal of Science Laureate
Throughout our history, the United States has inspired and attracted students and scientists from around the world. They are typically motivated by the freedom to do creative work in our universities and research institutions unfettered by political interference. Immigrant scientists now make up 25% of our science and technology workforce and have contributed enormously to our economic growth and to the health and well-being of all Americans. They have also enhanced our prestige internationally, with immigrants to the United States winning 35% of the Nobel Prizes awarded to Americans in physics, chemistry, and medicine since 1901 and pointing to America's vision in embracing talent from around the world.
Unfortunately, recent anti-immigrant rhetoric and policies such as the travel ban and a recently issued proclamation that temporarily restricts many types of legal immigration (including students and scientists) have led many international students and scientists to reconsider building their careers in the United States.
It is urgent that our next President reassures the international community and our international students and scientists that (1) the United States will be an unwavering voice for bringing the power of science to the solution of global problems including the COVID-19 pandemic and climate change; (2) our policies and actions will be informed by science; and (3) international students and scientists who choose to come to the United States (as well as those already in our country) will be welcome and protected from political interference irrespective of their race or their country of origin.
- - - - - - - - -
Jeffrey Friedman, M.D., Ph.D.
- Marilyn M. Simpson Professor
- Rockefeller University
- 2020 Breakthrough Prize in Life Sciences Laureate
The COVID-19 pandemic has reaffirmed the critical role that science plays in peoples' lives. Stunning advances over the last 75 years made it possible to identify the infectious agent, develop robust new diagnostics, implement increasingly effective treatments (with more to come), and develop and test new vaccines all with startling rapidity. Compare this to the response to the Spanish Flu epidemic a century ago when it took years before the viral etiology was even confirmed. This remarkable progress provides a powerful reminder of why generous funding of science is crucial.
It is important to remember, however, that this stunning progress was made possible not just by scientists applying an ever-expanding body of knowledge to the current crisis but also by the innumerable scientists who laid the foundation that underpins that knowledge. This includes the scientists who, by following their own curiosity, showed that genes were made of DNA, defined how DNA after being copied into RNA provides the blueprint for making proteins in cells, and discovered that the genes in some viruses such as COVID are made of RNA rather than DNA. Still other scientists developed methods for isolating and studying genes and their functions in the laboratory.
In many cases, these enabling technologies depended on advances that had no obvious applications at the time, such as the discovery of restriction enzymes, proteins which cut DNA in specific places. This research was motivated not by practical considerations but by the curiosity of Nobel Prize winners Dan Nathans and Ham Smith who wanted to understand how bacteria protect themselves from the viruses (known as bacteriophage) that infect them. It was this advance, and many others like it, that helped to usher in the era of modern science that empowered the remarkable response to the current pandemic. So as we make the case to increase the funding of science, we need to ensure that the investments include not only the application of our current knowledge to our immediate needs, but also include investments in the curiosity-driven research that makes those applications possible.
- - - - - - - - -
Jerome I. Friedman, Ph.D.
- Institute Professor and Professor of Physics, Emeritus
- Massachusetts Institute of Technology
- 1990 Nobel Laureate in Physics
Investment in science and technology is an absolute necessity to develop the innovations that are needed to mitigate and reverse damage to the environment, protect our health, ensure future improvements in our standard of living, and stimulate economic growth. Applied research and invention play extremely important roles in innovation, but it should be emphasized that basic research has in general produced the major conceptual breakthroughs that have resulted in radically new technologies. For example, at a time in the past, electricity and magnetism were just laboratory curiosities. Now they are integral to the technologies of modern society. The study of the structure of the atom has led to the digital world in which we now live, and understanding the structure of DNA has revolutionized medicine. Such breakthroughs are needed to address and reduce the serious problems that afflict our world. To achieve our goals, we need to expand our base of fundamental knowledge to produce the new technologies that we desperately need. This will require a substantial increase in investment by the Federal Government in all types of research, and, because industry does not support basic research as it did in the past, the funding of basic research is especially dependent on the Federal Government. Funding for research is not a cost; it is an investment that will pay back rich dividends in the future, as it has done in the past.
- - - - - - - - -
Elaine Fuchs, Ph.D.
- Professor of Mammalian Cell Biology and Development
- Rockefeller University
- Investigator, Howard Hughes Medical Institute
- 2008 National Medal of Science Laureate
The COVID-19 pandemic exemplifies why our nation needs an effective, rapid response team of scientific experts to help contain the spread of infectious pathogens. In times of a pandemic, America must also mobilize government funds to enable another cadre of scientists to identify ways to disarm the microbes. However, such efforts will only succeed when the existing basic science foundation is strong. Our nation has long been the world's leader in biomedical research, and our accrued knowledge of viruses, their ability to infect epithelial cells, and the inflammatory responses that they elicit, gave our scientists the jumpstart necessary to rapidly develop vaccines and neutralizing antibodies against the SARS-CoV2 virus. With the ever-increasing barrage of unexpected health challenges that our changing climate imposes upon us, America must continue to strengthen and broaden our basic science foundation and to provide the training and support to prepare the next generations of scientists to participate in this endeavor.
As a basic scientist working at the interface between science and medicine, I've witnessed numerous examples in my career that illustrate how important basic science is for advancing new and improved treatments for human conditions. For example, mutations in a nuclear modification first described in algae causes a lethal brain cancer in children. Additionally, current cancer treatments often make patients sick because they harm both healthy and cancerous tissue, and the cancers often relapse after treatment. Determining which cancer cells are responsible for relapse and how they differ from the healthy stem cells that fuel normal tissue growth and repair, could lead to blueprints for designing therapeutics that effectively kill these resilient cancerous cells without harming the normal tissue.
Our government's long-standing support for basic science makes it easier than ever before to solve the scientific puzzles needed to disarm threats to our health and fitness. However, our bodies are continually exposed to new stresses, new microbes, new pollution. By keeping a high pace of basic science and discovery, and inspiring and training the best and brightest young minds from diverse backgrounds, we will stand the best chance of being prepared for whatever nature has in store for us in the future.
- - - - - - - - -
H. Robert Horvitz, Ph.D.
- David H. Koch Professor in Biology
- Massachusetts Institute of Technology
- Investigator, Howard Hughes Medical Institute
- 2002 Nobel Laureate in Physiology or Medicine
While resoundingly validating the investment in biomedical research that has been made over the past decades, the response of our nation to the COVID-19 pandemic has also cast a harsh light on us, including on aspects of our national scientific and biomedical enterprise, revealing gaps in understanding as well as in the efficient application and deployment of available knowledge and technology. As we enter a new Presidential term, American science needs to draw on its COVID-19 experiences, both the innovative and the painful, to face a changing world. Scientists have much to learn in the coming months from COVID-19 about emerging health challenges, about safeguarding our nation's physical health, and about sustaining American leadership in biomedical research. By leading our country over the next four years, you will have the opportunity to impact the health and safety of generations of Americans.
Past federal investment in biomedical research has been extraordinarily productive. Largely through research conducted or supported by the National Institutes of Health (NIH), the United States has led the way in pioneering crucial diagnostic procedures, novel treatments, life-changing cures, and innovative prevention strategies for a broad variety of disorders, including cancer and heart disease. This core of evidence-based science powered our response to the pandemic as NIH-supported scientists unraveled the basic biology of the SARS-CoV2 virus, drove unprecedentedly rapid diagnostic and vaccine development, and sharpened treatment protocols. Maintaining—and bolstering—that core is critical to our national health, economy, and security.
The NIH must now reaffirm its commitment to fundamental and bold biomedical research. That is why, along with 13 of my colleagues from across the nation, I am preparing a report that seeks to advise the next Administration about how best to capitalize on the enormous promise of 21st-century biology. Our NIH Vision and Pathways report will provide a perspective on and vision for biomedical research and health, as well as describe specific proposed changes that will focus and strengthen NIH to achieve that vision. Our suggestions encompass four areas concerning NIH structure and operations:
- Research: Driving Innovation and Discovery
- Training: Preparing the Next Generation
- Administration and Operations: Maximizing Opportunity
- Appointment of the NIH Director
Your administration can seize this opportunity to shape the NIH, a crown jewel of the federal government, in ways that will make it more impactful and efficient in improving the health and well-being of Americans and will ensure the leadership position of our country in the field of biomedicine for decades to come.
- - - - - - - - -
David Julius, Ph.D.
- Professor and Chair of Physiology
- University of California, San Francisco
- 2020 Breakthrough Prize in Life Sciences Laureate
A couple of Thanksgiving dinners ago, I got into a discussion with a relative who disparaged climate change as a hoax. I pointed out that he was the same person who prided our country for its legendary technical and scientific accomplishments, such as building the Panama Canal, landing on the moon, or conquering polio. Honestly, I was amazed at this contradiction: how can someone believe so fervently in the idea of "American Exceptionalism" yet now devalue and discount the advice of our scientific and engineering community? Can we really have it both ways?
Perhaps more than anything else, the next President of the United States must take on the goal of repairing and reestablishing respect for education, knowledge, professional expertise, and fact-based decision making. Otherwise, the foundation of our nation's legendary scientific and engineering excellence shall crumble. Scientists and engineers hail from all corners of our country and world—urban and rural, wealthy and poor, etc. What unites us is a passion for curiosity, discovery, creativity, and problem solving. Our next leader must challenge the canard that scientists constitute a class of intellectual and cultural elites separate from the rest of society.
With regard to biomedical research, I remain a believer in the power of basic, curiosity-driven research. Time and again, we find that transformational discoveries in science and medicine come from unexpected or unanticipated avenues of inquiry (think CRISPR gene-editing technology, discovery of innate immune pathways in flies, or snake venoms as the inspiration for anti-hypertensive drugs). Certainly there are moments—such as the current COVID-19 pandemic—to mobilize goal-directed efforts, but we must not forsake bedrock basic, curiosity-driven research programs, which will continue to yield discoveries that move biomedical research and technology forward so we can tackle known diseases or the next unforeseen global health challenge.
- - - - - - - - -
William G. Kaelin, Jr., M.D.
- Sidney Farber Professor of Medicine
- Dana-Farber Cancer Institute and Brigham and Women's Hospital
- Harvard Medical School
- Investigator, Howard Hughes Medical Institute
- 2019 Nobel Laureate in Physiology or Medicine
Winning the Nobel Prize last year has caused me to reflect on some of the ways government policies influenced my career. I was born in 1957, about six weeks after the Sputnik launch. Science and engineering were celebrated in the United States during my childhood, partly because of the ensuing space race and the Cold War. Bipartisan support for science education and scientific research was like mom and apple pie for most of my early years. I had the opportunity in 1974 to attend a National Science Foundation Student Science Training Program in Computers and Mathematics that absolutely transformed me as a student because it was the first time I was surrounded by students who were almost uniformly smarter than I was and the first time I encountered a curriculum that I found truly challenging and interesting. During my clinical training to become a doctor, I routinely encountered brilliant physician-scientists, many of whom had trained at the National Institutes of Health (NIH) during the Vietnam War era (the so-called "Yellow Berets"). When I pivoted from clinical medicine to laboratory research in the 1980s, my development was supported by NIH training and research grants. In 1994, the NIH budget was doubled with bipartisan support, just as my funding was growing perilous. It enabled me to pursue the work that led to my Nobel Prize.
Sadly, federal support for science has been flat for many years now. What is worse, some politicians, to accomplish their political agendas, use language that disparages science and scientists and act as though knowledge and truth are subjective. Adding further insult, the economic disruptions from COVID-19 are likely to decrease the hiring of newly minted scientists by academia. We run the risk of losing the next generation of researchers if we don't immediately take steps to convince young people that seeking truth and knowledge is a noble endeavor and that their careers will be valued and supported. I would pay particular attention to the support of basic, fundamental research. A formula that served us well dating back to the middle of the last century was to have the federal government support basic science and to have the private sector decide when the knowledge it generated was ripe for application. Basic science is the most vulnerable part of the entire research enterprise, partly because its timelines and deliverables are often unknowable (and hence shunned by investors), and yet it is basic science that over and over leads to the truly transformative discoveries that change the way we think about the world and improve our lives. It is also the formula that explains why Americans have won a disproportionate number of Nobel Prizes over the last century. This formula has not escaped the notice of some of our competitors. It would be tragic if we ourselves forgot it.
- - - - - - - - -
Judith P. Klinman, Ph.D.
- Professor of the Graduate School and Chancellor's Professor of Chemistry
- University of California, Berkeley
- 2012 National Medal of Science Laureate
During the 20th and early 21st centuries, American science experienced a "Golden Age." While this may have been taken for granted by many of us in the scientific community, it is impossible to ignore its decline during the last four years. The neglect and disengagement of government support for key agencies, and science in general, have been devastating on many levels, the most immediate being the excessive and unnecessary number of deaths from COVID-19. The current pandemic is unlikely to be a standalone event and is connected to the ongoing loss of natural habitats within the larger "Climate Change" crisis.
The divestment of government from knowledge-based engagement in global warming has become both immoral and irresponsible, and the time for remediation is rapidly running out. I believe it is imperative that the next administration work quickly on multiple fronts that include a complete and rapid refocus on sustainable energy, a continuing investment in research toward carbon capture, and the pursuit of best practices that will support a new infrastructure that enables the necessary behavioral changes of all citizens. Unless we work quickly and effectively, the younger generation that includes our children (both biological and academic) are, I fear, inheriting an uninhabitable Planet Earth.
- - - - - - - - -
J. Michael Kosterlitz, Ph.D.
- Harrison E. Farnsworth Professor of Physics
- Brown University
- 2016 Nobel Laureate in Physics
There are two parts to the development of a device like the cell phone. First, you need the theoretical scientists who pursue various avenues of knowledge out of curiosity. Then, you need the practical scientists who today are called engineers or, in medicine, doctors. They take theoretical knowledge developed by theorists, play with it, and, with a lot of luck, develop some useful device based on the existing theoretical understanding. It is important to realize that both parts are needed. The basic theoretical understanding comes first followed by the development of some practical device which is not possible without the underlying theory. Both types of science are necessary for a final outcome. To an average person, who neither knows nor cares about science, only the engineering part seems important because the connection is more immediate. However, for the successful development of some useful device, both are usually equally important. Without the basic knowledge developed by the scientist doing apparently useless curiosity-driven research, the basic understanding for the practical development would not be there, so the device would not be built. Both the theoretical and the practical skills are needed and both should be adequately funded. One cannot exist without the other, and results from one feed into the other.
For the next four years of your presidency, one of the most important considerations is the health of the population. As we have all seen during the coronavirus pandemic, the whole country suffers when the population does not have adequate access to effective health care. This should be central to your presidency because the economy of the country depends critically on a healthy population. The key to a vibrant economy is adequate government funding of the whole scientific effort in as many branches as possible. Of course, there will be some inevitable wastage but, to keep America competitive, funding by government and supplemented by private agencies of all the real sciences is vital. I do not have the conceit to make specific suggestions about which branch of science or engineering is more important than another. They all deserve some funding until such time that they are proved to be useless or wrong like the old discredited phlogiston theory of burning.
- - - - - - - - -
Adrian R. Krainer, Ph.D.
- St. Giles Foundation Professor
- Cold Spring Harbor Laboratory
- 2019 Breakthrough Prize in Life Sciences Laureate
Congratulations on your election. The next four years will pose major challenges, but we have the ability to address them effectively. I arrived in this country as a foreign student four decades ago, to begin my college education. I chose to study in the U.S. because I knew it was the top place in the world for biomedical research, and I was fortunate to have this opportunity. After graduate school, I accepted a job offer in academic research, I became a resident and then a citizen, and I never looked back. Together with my trainees—who came from the U.S. and 20 other countries—and our collaborators, we succeeded in developing an effective treatment for a devastating genetic disease, helping thousands of patients around the world live longer and more productive lives, and creating many jobs in the process. I know from this experience that government funding of basic research, e.g., through the NIH and NSF, plays an incredibly important role. This public investment ultimately improves the lives for all humanity, and along the way it results in job creation and attracts top talent from the U.S. and abroad. Other countries, notably China, have emulated us by making massive investments in education, science, technology, and infrastructure, with increasingly impressive results. To remain at the forefront, we must increase or at least sustain the pace of public investment in these key areas. Our institutions of higher learning continue to be a magnet for top talent from around the world. Some of these visitors eventually choose to stay, and we should welcome them; others will return home but maintain connections with, and good will toward, America. Science is a global endeavor, and challenges such as human diseases, pandemics, and climate change know no international boundaries. The U.S. must continue to lead the world in the search for effective solutions to these vexing problems.
- - - - - - - - -
John C. Mather, Ph.D.
- 2006 Nobel Laureate in Physics
We need to upgrade the EPA into the National Environmental Defense Agency (NEDA) with a charter to protect all Americans as a matter of national security, equal in importance to the Department of Defense and the Department of Homeland Security. Failure to address climate change would be a worldwide and permanent catastrophe, so the NEDA would take all necessary actions including measurement, analysis, fundamental research, technology development and commercialization, disaster planning, infrastructure support for mitigation, and international leadership. Congress should support this work because it means jobs for millions of Americans, and taxpayers should support it because it preserves their wealth. The health and prosperity of Americans for the next four years, and on for at least the next thousand, depend now and always on noticing what's happening and responding accordingly. But we've been caught unprepared for multiple disasters, and more are coming. Some could be mitigated with planning and organization at all levels from international and federal to personal, and some need inventions and discoveries we don't yet have. Though the time scale is uncertain, the sea is rising every year, with no end in sight. When the sea rises six feet, over ten million Americans will lose their homes and land. When the tropics become unbearably hot, more millions will migrate to America. If a foreign power were taking our land, we would act. If a foreign power were setting the American West ablaze, we would act. If our farms were dying, we would act. Shall we not act? We need responsibility, authority, and a plan. It might sound impossible, but so were electricity, moon rockets, and the internet not long ago. We can do this, and you as President can make it happen.
- - - - - - - - -
A blood test may catch colorectal cancer before it's too late
Soon it may be possible to find different types of cancer earlier than ever through a simple blood test.
Among the many blood tests in development, researchers announced in July that they have developed one that may screen for early-onset colorectal cancer. The new potential screening tool, detailed in a study in the journal Gastroenterology, represents a major step in noninvasively and inexpensively detecting nonhereditary colorectal cancer at an earlier and more treatable stage.
In recent years, this type of cancer has been on the upswing in adults under age 50 and in those without a family history. In 2021, the American Cancer Society's revised guidelines began recommending that colorectal cancer screenings with colonoscopy begin at age 45. But that still wouldn’t catch many early-onset cases among people in their 20s and 30s, says Ajay Goel, professor and chair of molecular diagnostics and experimental therapeutics at City of Hope, a Los Angeles-based nonprofit cancer research and treatment center that developed the new blood test.
“These people will mostly be missed because they will never be screened for it,” Goel says. Overall, colorectal cancer is the fourth most common malignancy, according to the U.S. Centers for Disease Control and Prevention.
Goel is far from the only one working on this. Dozens of companies are in the process of developing blood tests to screen for different types of malignancies.
Some estimates indicate that between one-fourth and one-third of all newly diagnosed colorectal cancers are early-onset. These patients generally present with more aggressive and advanced disease at diagnosis compared to late-onset colorectal cancer detected in people 50 years or older.
To develop his test, Goel examined publicly available datasets and figured out that changes in novel microRNAs, or miRNAs, which regulate the expression of genes, occurred in people with early-onset colorectal cancer. He confirmed these biomarkers by looking for them in the blood of 149 patients who had the early-onset form of the disease. In particular, Goel and his team of researchers were able to pick out four miRNAs that serve as a telltale sign of this cancer when they’re found in combination with each other.
The blood test is being validated by following another group of patients with early-onset colorectal cancer. “We have filed for intellectual property on this invention and are currently seeking biotech/pharma partners to license and commercialize this invention,” Goel says.
He’s far from the only one working on this. Dozens of companies are in the process of developing blood tests to screen for different types of malignancies, says Timothy Rebbeck, a professor of cancer prevention at the Harvard T.H. Chan School of Public Health and the Dana-Farber Cancer Institute. But, he adds, “It’s still very early, and the technology still needs a lot of work before it will revolutionize early detection.”
The accuracy of the early detection blood tests for cancer isn’t yet where researchers would like it to be. To use these tests widely in people without cancer, a very high degree of precision is needed, says David VanderWeele, interim director of the OncoSET Molecular Tumor Board at Northwestern University’s Lurie Cancer Center in Chicago.
Otherwise, “you’re going to cause a lot of anxiety unnecessarily if people have false-positive tests,” VanderWeele says. So far, “these tests are better at finding cancer when there’s a higher burden of cancer present,” although the goal is to detect cancer at the earliest stages. Even so, “we are making progress,” he adds.
While early detection is known to improve outcomes, most cancers are detected too late, often after they metastasize and people develop symptoms. Only five cancer types have recommended standard screenings, none of which involve blood tests—breast, cervical, colorectal, lung (smokers considered at risk) and prostate cancers, says Trish Rowland, vice president of corporate communications at GRAIL, a biotechnology company in Menlo Park, Calif., which developed a multi-cancer early detection blood test.
These recommended screenings check for individual cancers rather than looking for any form of cancer someone may have. The devil lies in the fact that cancers without widespread screening recommendations represent the vast majority of cancer diagnoses and most cancer deaths.
GRAIL’s Galleri multi-cancer early detection test is designed to find more cancers at earlier stages by analyzing DNA shed into the bloodstream by cells—with as few false positives as possible, she says. The test is currently available by prescription only for those with an elevated risk of cancer. Consumers can request it from their healthcare or telemedicine provider. “Galleri can detect a shared cancer signal across more than 50 types of cancers through a simple blood draw,” Rowland says, adding that it can be integrated into annual health checks and routine blood work.
Cancer patients—even those with early and curable disease—often have tumor cells circulating in their blood. “These tumor cells act as a biomarker and can be used for cancer detection and diagnosis,” says Andrew Wang, a radiation oncologist and professor at the University of Texas Southwestern Medical Center in Dallas. “Our research goal is to be able to detect these tumor cells to help with cancer management.” Collaborating with Seungpyo Hong, the Milton J. Henrichs Chair and Professor at the University of Wisconsin-Madison School of Pharmacy, “we have developed a highly sensitive assay to capture these circulating tumor cells.”
Even if the quality of a blood test is superior, finding cancer early doesn’t always mean it’s absolutely best to treat it. For example, prostate cancer treatment’s potential side effects—the inability to control urine or have sex—may be worse than living with a slow-growing tumor that is unlikely to be fatal. “[The test] needs to tell me, am I going to die of that cancer? And, if I intervene, will I live longer?” says John Marshall, chief of hematology and oncology at Medstar Georgetown University Hospital in Washington, D.C.
Ajay Goel Lab
A blood test developed at the University of Texas MD Anderson Cancer Center in Houston helps predict who may benefit from lung cancer screening when it is combined with a risk model based on an individual’s smoking history, according to a study published in January in the Journal of Clinical Oncology. The personalized lung cancer risk assessment was more sensitive and specific than the 2021 and 2013 U.S. Preventive Services Task Force criteria.
The study involved participants from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial with a minimum of a 10 pack-year smoking history, meaning they smoked 20 cigarettes per day for ten years. If implemented, the blood test plus model would have found 9.2 percent more lung cancer cases for screening and decreased referral to screening among non-cases by 13.7 percent compared to the 2021 task force criteria, according to Oncology Times.
The conventional type of screening for lung cancer is an annual low-dose CT scan, but only a small percentage of people who are eligible will actually get these scans, says Sam Hanash, professor of clinical cancer prevention and director of MD Anderson’s Center for Global Cancer Early Detection. Such screening is not readily available in most countries.
In methodically searching for blood-based biomarkers for lung cancer screening, MD Anderson researchers developed a simple test consisting of four proteins. These proteins circulating in the blood were at high levels in individuals who had lung cancer or later developed it, Hanash says.
“The interest in blood tests for cancer early detection has skyrocketed in the past few years,” he notes, “due in part to advances in technology and a better understanding of cancer causation, cancer drivers and molecular changes that occur with cancer development.”
However, at the present time, none of the blood tests being considered eliminate the need for screening of eligible subjects using established methods, such as colonoscopy for colorectal cancer. Yet, Hanash says, “they have the potential to complement these modalities.”
Study Shows “Living Drug” Can Provide a Lasting Cure for Cancer
Doug Olson was 49 when he was diagnosed with chronic lymphocytic leukemia, a blood cancer that strikes 21,000 Americans annually. Although the disease kills most patients within a decade, Olson’s case progressed more slowly, and courses of mild chemotherapy kept him healthy for 13 years. Then, when he was 62, the medication stopped working. The cancer had mutated, his doctor explained, becoming resistant to standard remedies. Harsher forms of chemo might buy him a few months, but their side effects would be debilitating. It was time to consider the treatment of last resort: a bone-marrow transplant.
Olson, a scientist who developed blood-testing instruments, knew the odds. There was only a 50 percent chance that a transplant would cure him. There was a 20 percent chance that the agonizing procedure—which involves destroying the patient’s marrow with chemo and radiation, then infusing his blood with donated stem cells—would kill him. If he survived, he would face the danger of graft-versus-host disease, in which the donor’s cells attack the recipient’s tissues. To prevent it, he would have to take immunosuppressant drugs, increasing the risk of infections. He could end up with pneumonia if one of his three grandchildren caught a sniffle. “I was being pushed into a corner,” Olson recalls, “with very little room to move.”
Soon afterward, however, his doctor revealed a possible escape route. He and some colleagues at the University of Pennsylvania’s Abramson Cancer Center were starting a clinical trial, he said, and Olson—still mostly symptom-free—might be a good candidate. The experimental treatment, known as CAR-T therapy, would use genetic engineering to turn his T lymphocytes (immune cells that guard against viruses and other pathogens) into a weapon against cancer.
In September 2010, technicians took some of Olson’s T cells to a laboratory, where they were programmed with new molecular marching orders and coaxed to multiply into an army of millions. When they were ready, a nurse inserted a catheter into his neck. At the turn of a valve, his soldiers returned home, ready to do battle.
“I felt like I’d won the lottery,” Olson says. But he was only the second person in the world to receive this “living drug,” as the University of Pennsylvania investigators called it. No one knew how long his remission would last.
Three weeks later, Olson was slammed with a 102-degree fever, nausea, and chills. The treatment had triggered two dangerous complications: cytokine release syndrome, in which immune chemicals inflame the patient’s tissues, and tumor lysis syndrome, in which toxins from dying cancer cells overwhelm the kidneys. But the crisis passed quickly, and the CAR-T cells fought on. A month after the infusion, the doctor delivered astounding news: “We can’t find any cancer in your body.”
“I felt like I’d won the lottery,” Olson says. But he was only the second person in the world to receive this “living drug,” as the University of Pennsylvania investigators called it. No one knew how long his remission would last.
An Unexpected Cure
In February 2022, the same cancer researchers reported a remarkable milestone: the trial’s first two patients had survived for more than a decade. Although Olson’s predecessor—a retired corrections officer named Bill Ludwig—died of COVID-19 complications in early 2021, both men had remained cancer-free. And the modified immune cells continued to patrol their territory, ready to kill suspected tumor cells the moment they arose.
“We can now conclude that CAR-T cells can actually cure patients with leukemia,” University of Pennsylvania immunologist Carl June, who spearheaded the development of the technique, told reporters. “We thought the cells would be gone in a month or two. The fact that they’ve survived 10 years is a major surprise.”
Even before the announcement, it was clear that CAR-T therapy could win a lasting reprieve for many patients with cancers that were once a death sentence. Since the Food and Drug Administration approved June’s version (marketed as Kymriah) in 2017, the agency has greenlighted five more such treatments for various types of leukemia, lymphoma, and myeloma. “Every single day, I take care of patients who would previously have been told they had no options,” says Rayne Rouce, a pediatric hematologist/oncologist at Texas Children’s Cancer Center. “Now we not only have a treatment option for those patients, but one that could potentially be the last therapy for their cancer that they’ll ever have to receive.”
Immunologist Carl June, middle, spearheaded development of the CAR-T therapy that gave patients Bill Ludwig, left, and Doug Olson, right, a lengthy reprieve on their terminal cancer diagnoses.
Penn Medicine
Yet the CAR-T approach doesn’t help everyone. So far, it has only shown success for blood cancers—and for those, the overall remission rate is 30 to 40 percent. “When it works, it works extraordinarily well,” says Olson’s former doctor, David Porter, director of Penn’s blood and bone marrow transplant program. “It’s important to know why it works, but it’s equally important to know why it doesn’t—and how we can fix that.”
The team’s study, published in the journal Nature, offers a wealth of data on what worked for these two patients. It may also hold clues for how to make the therapy effective for more people.
Building a Better T Cell
Carl June didn’t set out to cure cancer, but his serendipitous career path—and a personal tragedy—helped him achieve insights that had eluded other researchers. In 1971, hoping to avoid combat in Vietnam, he applied to the U.S. Naval Academy in Annapolis, Maryland. June showed a knack for biology, so the Navy sent him on to Baylor College of Medicine. He fell in love with immunology during a fellowship researching malaria vaccines in Switzerland. Later, the Navy deployed him to the Fred Hutchinson Cancer Research Center in Seattle to study bone marrow transplantation.
There, June became part of the first research team to learn how to culture T cells efficiently in a lab. After moving on to the National Naval Medical Center in the ’80s, he used that knowledge to combat the newly emerging AIDS epidemic. HIV, the virus that causes the disease, invades T cells and eventually destroys them. June and his post-doc Bruce Levine developed a method to restore patients’ depleted cell populations, using tiny magnetic beads to deliver growth-stimulating proteins. Infused into the body, the new T cells effectively boosted immune function.
In 1999, after leaving the Navy, June joined the University of Pennsylvania. His wife, who’d been diagnosed with ovarian cancer, died two years later, leaving three young children. “I had not known what it was like to be on the other side of the bed,” he recalls. Watching her suffer through grueling but futile chemotherapy, followed by an unsuccessful bone-marrow transplant, he resolved to focus on finding better cancer treatments. He started with leukemia—a family of diseases in which mutant white blood cells proliferate in the marrow.
Cancer is highly skilled at slipping through the immune system’s defenses. T cells, for example, detect pathogens by latching onto them with receptors designed to recognize foreign proteins. Leukemia cells evade detection, in part, by masquerading as normal white blood cells—that is, as part of the immune system itself.
June planned to use a viral vector no one had tried before: HIV.
To June, chimeric antigen receptor (CAR) T cells looked like a promising tool for unmasking and destroying the impostors. Developed in the early ’90s, these cells could be programmed to identify a target protein, and to kill any pathogen that displayed it. To do the programming, you spliced together snippets of DNA and inserted them into a disabled virus. Next, you removed some of the patient’s T cells and infected them with the virus, which genetically hijacked its new hosts—instructing them to find and slay the patient’s particular type of cancer cells. When the T cells multiplied, their descendants carried the new genetic code. You then infused those modified cells into the patient, where they went to war against their designated enemy.
Or that’s what happened in theory. Many scientists had tried to develop therapies using CAR-T cells, but none had succeeded. Although the technique worked in lab animals, the cells either died out or lost their potency in humans.
But June had the advantage of his years nurturing T cells for AIDS patients, as well as the technology he’d developed with Levine (who’d followed him to Penn with other team members). He also planned to use a viral vector no one had tried before: HIV, which had evolved to thrive in human T cells and could be altered to avoid causing disease. By the summer of 2010, he was ready to test CAR-T therapy against chronic lymphocytic leukemia (CLL), the most common form of the disease in adults.
Three patients signed up for the trial, including Doug Olson and Bill Ludwig. A portion of each man’s T cells were reprogrammed to detect a protein found only on B lymphocytes, the type of white blood cells affected by CLL. Their genetic instructions ordered them to destroy any cell carrying the protein, known as CD19, and to multiply whenever they encountered one. This meant the patients would forfeit all their B cells, not just cancerous ones—but regular injections of gamma globulins (a cocktail of antibodies) would make up for the loss.
After being infused with the CAR-T cells, all three men suffered high fevers and potentially life-threatening inflammation, but all pulled through without lasting damage. The third patient experienced a partial remission and survived for eight months. Olson and Ludwig were cured.
Learning What Works
Since those first infusions, researchers have developed reliable ways to prevent or treat the side effects of CAR-T therapy, greatly reducing its risks. They’ve also been experimenting with combination therapies—pairing CAR-T with chemo, cancer vaccines, and immunotherapy drugs called checkpoint inhibitors—to improve its success rate. But CAR-T cells are still ineffective for at least 60 percent of blood cancer patients. And they remain in the experimental stage for solid tumors (including pancreatic cancer, mesothelioma, and glioblastoma), whose greater complexity make them harder to attack.
The new Nature study offers clues that could fuel further advances. The Penn team “profiled these cells at a level where we can almost say, ‘These are the characteristics that a T cell would need to survive 10 years,’” says Rouce, the physician at Texas Children’s Cancer Center.
One surprising finding involves how CAR-T cells change in the body over time. At first, those that Olson and Ludwig received showed the hallmarks of “killer” T-cells (also known as CD8 cells)—highly active lymphocytes bent on exterminating every tumor cell in sight. After several months, however, the population shifted toward “helper” T-cells (or CD4s), which aid in forming long-term immune memory but are normally incapable of direct aggression. Over the years, the numbers swung back and forth, until only helper cells remained. Those cells showed markers suggesting they were too exhausted to function—but in the lab, they were able not only to recognize but to destroy cancer cells.
June and his team suspect that those tired-looking helper cells had enough oomph to kill off any B cells Olson and Ludwig made, keeping the pair’s cancers permanently at bay. If so, that could prompt new approaches to selecting cells for CAR-T therapy. Maybe starting with a mix of cell types—not only CD8s, but CD4s and other varieties—would work better than using CD8s alone. Or perhaps inducing changes in cell populations at different times would help.
Another potential avenue for improvement is starting with healthier cells. Evidence from this and other trials hints that patients whose T cells are more robust to begin with respond better when their cells are used in CAR-T therapy. The Penn team recently completed a clinical trial in which CLL patients were treated with ibrutinib—a drug that enhances T-cell function—before their CAR-T cells were manufactured. The response rate, says David Porter, was “very high,” with most patients remaining cancer-free a year after being infused with the souped-up cells.
Such approaches, he adds, are essential to achieving the next phase in CAR-T therapy: “Getting it to work not just in more people, but in everybody.”
Doug Olson enjoys nature - and having a future.
Penn Medicine
To grasp what that could mean, it helps to talk with Doug Olson, who’s now 75. In the years since his infusion, he has watched his four children forge careers, and his grandkids reach their teens. He has built a business and enjoyed the rewards of semi-retirement. He’s done volunteer and advocacy work for cancer patients, run half-marathons, sailed the Caribbean, and ridden his bike along the sun-dappled roads of Silicon Valley, his current home.
And in his spare moments, he has just sat there feeling grateful. “You don’t really appreciate the effect of having a lethal disease until it’s not there anymore,” he says. “The world looks different when you have a future.”
This article was first published on Leaps.org on March 24, 2022.