Can Genetic Testing Help Shed Light on the Autism Epidemic?

Can Genetic Testing Help Shed Light on the Autism Epidemic?

A little boy standing by a window in contemplation. (© altanaka/Fotolia)

(© altanaka/Fotolia)



Autism cases are still on the rise, and scientists don't know why. In April, the Centers for Disease Control (CDC) reported that rates of autism had increased once again, now at an estimated 1 in 59 children up from 1 in 68 just two years ago. Rates have been climbing steadily since 2007 when the CDC initially estimated that 1 in 150 children were on the autism spectrum.

Some clinicians are concerned that the creeping expansion of autism is causing the diagnosis to lose its meaning.

The standard explanation for this increase has been the expansion of the definition of autism to include milder forms like Asperger's, as well as a heightened awareness of the condition that has improved screening efforts. For example, the most recent jump is attributed to children in minority communities being diagnosed who might have previously gone under the radar. In addition, more federally funded resources are available to children with autism than other types of developmental disorders, which may prompt families or physicians to push harder for a diagnosis.

Some clinicians are concerned that the creeping expansion of autism is causing the diagnosis to lose its meaning. William Graf, a pediatric neurologist at Connecticut Children's Medical Center, says that when a nurse tells him that a new patient has a history of autism, the term is no longer a useful description. "Even though I know this topic extremely well, I cannot picture the child anymore," he says. "Use the words mild, moderate, or severe. Just give me a couple more clues, because when you say autism today, I have no idea what people are talking about anymore."

Genetic testing has emerged as one potential way to remedy the overly broad label by narrowing down a heterogeneous diagnosis to a specific genetic disorder. According to Suma Shankar, a medical geneticist at the University of California, Davis, up to 60 percent of autism cases could be attributed to underlying genetic causes. Common examples include Fragile X Syndrome or Rett Syndrome—neurodevelopmental disorders that are caused by mutations in individual genes and are behaviorally classified as autism.

With more than 500 different mutations associated with autism, very few additional diagnoses provide meaningful information.

Having a genetic diagnosis in addition to an autism diagnosis can help families in several ways, says Shankar. Knowing the genetic origin can alert families to other potential health problems that are linked to the mutation, such as heart defects or problems with the immune system. It may also help clinicians provide more targeted behavioral therapies and could one day lead to the development of drug treatments for underlying neurochemical abnormalities. "It will pave the way to begin to tease out treatments," Shankar says.

When a doctor diagnoses a child as having a specific genetic condition, the label of autism is still kept because it is more well-known and gives the child access to more state-funded resources. Children can thus be diagnosed with multiple conditions: autism spectrum disorder and their specific gene mutation. However, with more than 500 different mutations associated with autism, very few additional diagnoses provide meaningful information. What's more, the presence or absence of a mutation doesn't necessarily indicate whether the child is on the mild or severe end of the autism spectrum.

Because of this, Graf doubts that genetic classifications are really that useful. He tells the story of a boy with epilepsy and severe intellectual disabilities who was diagnosed with autism as a young child. Years later, Graf ordered genetic testing for the boy and discovered that he had a mutation in the gene SYNGAP1. However, this knowledge didn't change the boy's autism status. "That diagnosis [SYNGAP1] turns out to be very specific for him, but it will never be a household name. Biologically it's good to know, and now it's all over his chart. But on a societal level he still needs this catch-all label [of autism]," Graf says.

"It gives some information, but to what degree does that change treatment or prognosis?"

Jennifer Singh, a sociologist at Georgia Tech who wrote the book Multiple Autisms: Spectrums of Advocacy and Genomic Science, agrees. "I don't know that the knowledge gained from just having a gene that's linked to autism," is that beneficial, she says. "It gives some information, but to what degree does that change treatment or prognosis? Because at the end of the day you have to address the issues that are at hand, whatever they might be."

As more children are diagnosed with autism, knowledge of the underlying genetic mutation causing the condition could help families better understand the diagnosis and anticipate their child's developmental trajectory. However, for the vast majority, an additional label provides little clarity or consolation.

Instead of spending money on genetic screens, Singh thinks the resources would be better used on additional services for people who don't have access to behavioral, speech, or occupational therapy. "Things that are really going to matter for this child in their future," she says.

Dana Smith
Dana Smith is a freelance science writer specializing in brains and bodies. She has written for the Atlantic, the Guardian, NPR, Scientific American, Discover, and Fast Company, among others. In a previous life, she earned a PhD in Experimental Psychology from the University of Cambridge. You can find more of her writing at danagsmith.com.
Award-Winning Scientists Offer Advice to President Biden

The White House in Washington, D.C.

Unsplash

This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.

We invited Nobel Prize, National Medal of Science, and Breakthrough Prize Laureates working in America to offer advice to the next President on how to prioritize science and medicine in the next four years. Almost universally, these 28 letters underscore the importance of government support for basic or fundamental research to fuel long-term solutions to challenges like infectious diseases, climate change, and environmental preservation.

Many of these scientists are immigrants to the United States and emphasize how they moved to this country for its educational and scientific opportunities, which recently have been threatened by changes in visa policies for students and researchers from overseas. Many respondents emphasize the importance of training opportunities for scientists from diverse backgrounds to ensure that America can continue to have one of the strongest, most creative scientific workforces in the world.

Keep Reading Keep Reading
Aaron F. Mertz
Aaron F. Mertz, Ph.D., is a biophysicist, science advocate, and the founding Director of the Aspen Institute Science & Society Program, launched in 2019 to help foster a diverse scientific workforce whose contributions extend beyond the laboratory and to generate greater public appreciation for science as a vital tool to address global challenges. He completed postdoctoral training in cell biology at Rockefeller University, a doctorate in physics at Yale University, a master’s degree in the history of science at the University of Oxford as a Rhodes Scholar, and a bachelor’s degree in physics at Washington University in St. Louis.
Out of Thin Air: A Fresh Solution to Farming’s Water Shortages

Dry, arid and remote farming regions are vulnerable to water shortages, but scientists are working on a promising new solution.

Photo by Amir Shahabi on Unsplash

California has been plagued by perilous droughts for decades. Freshwater shortages have sparked raging wildfires and killed fruit and vegetable crops. And California is not alone in its danger of running out of water for farming; parts of the Southwest, including Texas, are battling severe drought conditions, according to the North American Drought Monitor. These two states account for 316,900 of the 2 million total U.S. farms.

But even as farming becomes more vulnerable due to water shortages, the world's demand for food is projected to increase 70 percent by 2050, according to Guihua Yu, an associate professor of materials science at The University of Texas at Austin.

"Water is the most limiting natural resource for agricultural production because of the freshwater shortage and enormous water consumption needed for irrigation," Yu said.

Keep Reading Keep Reading
Katie Navarra
Katie Navarra is an award-winning writer who covers education, horses, farming, and business/leadership.