Drugs That Trick Older People’s Bodies to Behave Younger Might Boost the Effectiveness of a COVID-19 Vaccine

Drugs That Trick Older People’s Bodies to Behave Younger Might Boost the Effectiveness of a COVID-19 Vaccine

Because vaccination may be less effective in older people, it is imperative to test now whether immune boosters could help the efficacy of a COVID-19 vaccine in the elderly.

(© thodonal/Adobe)

In our April 23rd editorial for this magazine, we argued that addressing the COVID-19 pandemic requires that we both fight the SARS-CoV-2 virus and fortify the human hosts who are most vulnerable to it.

Keep Reading Keep Reading
Jamie Metzl And Nir Barzilai
Jamie Metzl is a member of the World Health Organization international advisory committee on human genome editing, a Singularity University Exponential Medicine faculty member, and the author of Hacking Darwin: Genetic Engineering and the Future of Humanity (paperback release April 7). @jamiemetzl. Nir Barzilai is a Professor of Medicine and Genetics and the Director of the Institute for Aging research at Albert Einstein College of Medicine, the Scientific Director of the American Federation for Aging Research and the author of Age Later: Healthspan, Lifespan, and the New Science of Longevity (June 2020). Dr. Nir Barzilai is the director of the Institute for Aging Research at the Albert Einstein College of Medicine and the Director of the Paul F. Glenn Center for the Biology of Human Aging Research and of the National Institutes of Health’s (NIH) Nathan Shock Centers of Excellence in the Basic Biology of Aging. He is the Ingeborg and Ira Leon Rennert Chair of Aging Research, professor in the Departments of Medicine and Genetics, and member of the Diabetes Research Center and of the Divisions of Endocrinology & Diabetes and Geriatrics. Dr. Barzilai’s research interests are in the biology and genetics of aging.
Movie still from the 1966 film "Fantastic Voyage" depicting a shrunken submarine amid red blood cells

A movie still from the 1966 film "Fantastic Voyage"

20th Century Fox

In the 1966 movie "Fantastic Voyage," actress Raquel Welch and her submarine were shrunk to the size of a cell in order to eliminate a blood clot in a scientist's brain. Now, 55 years later, the scenario is becoming closer to reality.

California-based startup Bionaut Labs has developed a nanobot about the size of a grain of rice that's designed to transport medication to the exact location in the body where it's needed. If you think about it, the conventional way to deliver medicine makes little sense: A painkiller affects the entire body instead of just the arm that's hurting, and chemotherapy is flushed through all the veins instead of precisely targeting the tumor.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at www.MichaelaHaas.com and Twitter @MichaelaHaas!
How the Human Brain Project Built a Mind of its Own

In 2013, the Human Brain Project set out to build a realistic computer model of the brain over ten years. Now, experts are reflecting on HBP's achievements with an eye toward the future.

The Human Brain Project

In 2009, neuroscientist Henry Markram gave an ambitious TED talk. “Our mission is to build a detailed, realistic computer model of the human brain,” he said, naming three reasons for this unmatched feat of engineering. One was because understanding the human brain was essential to get along in society. Another was because experimenting on animal brains could only get scientists so far in understanding the human ones. Third, medicines for mental disorders weren’t good enough. “There are two billion people on the planet that are affected by mental disorders, and the drugs that are used today are largely empirical,” Markram said. “I think that we can come up with very concrete solutions on how to treat disorders.”

Markram's arguments were very persuasive. In 2013, the European Commission launched the Human Brain Project, or HBP, as part of its Future and Emerging Technologies program. Viewed as Europe’s chance to try to win the “brain race” between the U.S., China, Japan, and other countries, the project received about a billion euros in funding with the goal to simulate the entire human brain on a supercomputer, or in silico, by 2023.

Now, after 10 years of dedicated neuroscience research, the HBP is coming to an end. As its many critics warned, it did not manage to build an entire human brain in silico. Instead, it achieved a multifaceted array of different goals, some of them unexpected.

Keep Reading Keep Reading
Kenna Hughes-Castleberry
Kenna Hughes-Castleberry is a writer, podcaster, and science communicator. She currently works as the Science Communicator at JILA and is the Editor-in-Chief of their journal Light & Matter. She is also a freelance science journalist and writes for Inside Quantum Technology as a freelance staff editor. Her beats include deep technology, quantum technology, metaverse technology, and diversity within these industries. Kenna’s work has been featured in various publications including Scientific American, Discover Magazine, Ars Technica, Physics.org, Inside Quantum Technology, The Quantum Insider, The Deep Tech Insider, the Metaverse Insider, The Debrief, and Octonation. She currently sits on the board of SWARM (Science Writers Association of the Rocky Mountains) as well as teaches science writing to graduate students at JILA. You can find her on Twitter and Instagram: @kennaculture