How 30 Years of Heart Surgeries Taught My Dad How to Live
[Editor's Note: This piece is the winner of our 2019 essay contest, which prompted readers to reflect on the question: "How has an advance in science or medicine changed your life?"]
My father did not expect to live past the age of 50. Neither of his parents had done so. And he also knew how he would die: by heart attack, just as his father did.
In July of 1976, he had his first heart attack, days before his 40th birthday.
My dad lived the first 40 years of his life with this knowledge buried in his bones. He started smoking at the age of 12, and was drinking before he was old enough to enlist in the Navy. He had a sarcastic, often cruel, sense of humor that could drive my mother, my sister and me into tears. He was not an easy man to live with, but that was okay by him - he didn't expect to live long.
In July of 1976, he had his first heart attack, days before his 40th birthday. I was 13, and my sister was 11. He needed quadruple bypass surgery. Our small town hospital was not equipped to do this type of surgery; he would have to be transported 40 miles away to a heart center. I understood this journey to mean that my father was seriously ill, and might die in the hospital, away from anyone he knew. And my father knew a lot of people - he was a popular high school English teacher, in a town with only three high schools. He knew generations of students and their parents. Our high school football team did a blood drive in his honor.
During a trip to Disney World in 1974, Dad was suffering from angina the entire time but refused to tell me (left) and my sister, Kris.
Quadruple bypass surgery in 1976 meant that my father's breastbone was cut open by a sternal saw. His ribcage was spread wide. After the bypass surgery, his bones would be pulled back together, and tied in place with wire. The wire would later be pulled out of his body when the bones knitted back together. It would take months before he was fully healed.
Dad was in the hospital for the rest of the summer and into the start of the new school year. Going to visit him was farther than I could ride my bicycle; it meant planning a trip in the car and going onto the interstate. The first time I was allowed to visit him in the ICU, he was lying in bed, and then pushed himself to sit up. The heart monitor he was attached to spiked up and down, and I fainted. I didn't know that heartbeats change when you move; television medical dramas never showed that - I honestly thought that I had driven my father into another heart attack.
Only a few short years after that, my father returned to the big hospital to have his heart checked with a new advance in heart treatment: a CT scan. This would allow doctors to check for clogged arteries and treat them before a fatal heart attack. The procedure identified a dangerous blockage, and my father was admitted immediately. This time, however, there was no need to break bones to get to the problem; my father was home within a month.
During the late 1970's, my father changed none of his habits. He was still smoking, and he continued to drink. But now, he was also taking pills - pills to manage the pain. He would pop a nitroglycerin tablet under his tongue whenever he was experiencing angina (I have a vivid memory of him doing this during my driving lessons), but he never mentioned that he was in pain. Instead, he would snap at one of us, or joke that we were killing him.
I think he finally determined that, if he was going to have these extra decades of life, he wanted to make them count.
Being the kind of guy he was, my father never wanted to talk about his health. Any admission of pain implied that he couldn't handle pain. He would try to "muscle through" his angina, as if his willpower would be stronger than his heart muscle. His efforts would inevitably fail, leaving him angry and ready to lash out at anyone or anything. He would blame one of us as a reason he "had" to take valium or pop a nitro tablet. Dinners often ended in shouts and tears, and my father stalking to the television room with a bottle of red wine.
In the 1980's while I was in college, my father had another heart attack. But now, less than 10 years after his first, medicine had changed: our hometown hospital had the technology to run dye through my father's blood stream, identify the blockages, and do preventative care that involved statins and blood thinners. In one case, the doctors would take blood vessels from my father's legs, and suture them to replace damaged arteries around his heart. New advances in cholesterol medication and treatments for angina could extend my father's life by many years.
My father decided it was time to quit smoking. It was the first significant health step I had ever seen him take. Until then, he treated his heart issues as if they were inevitable, and there was nothing that he could do to change what was happening to him. Quitting smoking was the first sign that my father was beginning to move out of his fatalistic mindset - and the accompanying fatal behaviors that all pointed to an early death.
In 1986, my father turned 50. He had now lived longer than either of his parents. The habits he had learned from them could be changed. He had stopped smoking - what else could he do?
It was a painful decade for all of us. My parents divorced. My sister quit college. I moved to the other side of the country and stopped speaking to my father for almost 10 years. My father remarried, and divorced a second time. I stopped counting the number of times he was in and out of the hospital with heart-related issues.
In the early 1990's, my father reached out to me. I think he finally determined that, if he was going to have these extra decades of life, he wanted to make them count. He traveled across the country to spend a week with me, to meet my friends, and to rebuild his relationship with me. He did the same with my sister. He stopped drinking. He was more forthcoming about his health, and admitted that he was taking an antidepressant. His humor became less cruel and sadistic. He took an active interest in the world. He became part of my life again.
The 1990's was also the decade of angioplasty. My father explained it to me like this: during his next surgery, the doctors would place balloons in his arteries, and inflate them. The balloons would then be removed (or dissolve), leaving the artery open again for blood. He had several of these surgeries over the next decade.
When my father was in his 60's, he danced at with me at my wedding. It was now 10 years past the time he had expected to live, and his life was transformed. He was living with a woman I had known since I was a child, and my wife and I would make regular visits to their home. My father retired from teaching, became an avid gardener, and always had a home project underway. He was a happy man.
Dancing with my father at my wedding in 1998.
Then, in the mid 2000's, my father faced another serious surgery. Years of arterial surgery, angioplasty, and damaged heart muscle were taking their toll. He opted to undergo a life-saving surgery at Cleveland Clinic. By this time, I was living in New York and my sister was living in Arizona. We both traveled to the Midwest to be with him. Dad was unconscious most of the time. We took turns holding his hand in the ICU, encouraging him to regain his will to live, and making outrageous threats if he didn't listen to us.
The nursing staff were wonderful. I remember telling them that my father had never expected to live this long. One of the nurses pointed out that most of the patients in their ward were in their 70's and 80's, and a few were in their 90's. She reminded me that just a decade earlier, most hospitals were unwilling to do the kind of surgery my father had received on patients his age. In the first decade of the 21st century, however, things were different: 90-year-olds could now undergo heart surgery and live another decade. My father was on the "young" side of their patients.
The Cleveland Clinic visit would be the last major heart surgery my father would have. Not that he didn't return to his local hospital a few times after that: he broke his neck -- not once, but twice! -- slipping on ice. And in the 2010's, he began to show signs of dementia, and needed more home care. His partner, who had her own health issues, was not able to provide the level of care my father needed. My sister invited him to move in with her, and in 2015, I traveled with him to Arizona to get him settled in.
After a few months, he accepted home hospice. We turned off his pacemaker when the hospice nurse explained to us that the job of a pacemaker is to literally jolt a patient's heart back into beating. The jolts were happening more and more frequently, causing my Dad additional, unwanted pain.
My father in 2015, a few months before his death.
My father died in February 2016. His body carried the scars and implants of 30 years of cardiac surgeries, from the ugly breastbone scar from the 1970's to scars on his arms and legs from borrowed blood vessels, to the tiny red circles of robotic incisions from the 21st century. The arteries and veins feeding his heart were a patchwork of transplanted leg veins and fragile arterial walls pressed thinner by balloons.
And my father died with no regrets or unfinished business. He died in my sister's home, with his long-time partner by his side. Medical advancements had given him the opportunity to live 30 years longer than he expected. But he was the one who decided how to live those extra years. He was the one who made the years matter.
It looks like an ordinary toilet but it is anything but. The "smart toilet" is the diagnostic tool of the future, equipped with cameras that take snapshots of the users and their waste, motion sensors to analyze what's inside the urine and stool samples, and software that automatically sends data to a secure, cloud-based system that can be easily accessed by your family doctor.
"It's a way of doing community surveillance. If there is a second wave of infections in the future, we'll know right away."
Using urine "dipstick tests" similar to the home pregnancy strips, the smart toilet can detect certain proteins, immune system biomarkers and blood cells that indicate the presence of such diseases as infections, bladder cancer, and kidney failure.
The rationale behind this invention is that some of the best ways of detecting what's going on in our bodies is by analyzing the substances we excrete every day, our sweat, urine, saliva and yes, our feces. Instead of getting sporadic snapshots from doctor's visits once or twice a year, the smart toilet provides continuous monitoring of our health 24/7, so we can catch the tell-tale molecular signature of illnesses at their earliest and most treatable stages. A brainchild of Stanford University researchers, they're now working to add a COVID-19 detection component to their suite of technologies—corona virus particles can be spotted in stool samples—and hope to have the system available within the year.
"We can connect the toilet system to cell phones so we'll know the results within 30 minutes," says Seung-min Park, a lead investigator on the research team that devised this technology and a senior research scientist at the Stanford University School of Medicine. "The beauty of this technology is that it can continuously monitor even after this pandemic is over. It's a way of doing community surveillance. If there is a second wave of infections in the future, we'll know right away."
Experts believe that the COVID-19 pandemic will accelerate the widespread acceptance of in-home diagnostic tools such as this. "Shock events" like pandemics can be catalysts for sweeping changes in society, history shows us. The Black Death marked the end of feudalism and ushered in the Renaissance while the aftershocks of the Great Depression and two world wars in the 20th century led to the social safety net of the New Deal and NATO and the European Union. COVID-19 could fundamentally alter the way we deliver healthcare, abandoning the outdated 20th century brick and mortar fee-for-service model in favor of digital medicine. At-home diagnostics may be the leading edge of this seismic shift and the pandemic could accelerate the product innovations that allow for home-based medical screening.
"That's the silver lining to this devastation," says Dr. Leslie Saxon, executive director of the USC Center for Body Computing at the Keck School of Medicine in Los Angeles. As an interventional cardiologist, Saxon has spent her career devising and refining the implantable and wearable wireless devices that are used to treat and diagnose heart conditions and prevent sudden death. "This will open up innovation—research has been stymied by a lack of imagination and marriage to an antiquated model," she adds. "There are already signs this is happening—relaxing state laws about licensure, allowing physicians to deliver health care in non-traditional ways. That's a real sea change and will completely democratize medical information and diagnostic testing."
Ironically, diagnostics have long been a step-child of modern medicine, even though accurate and timely diagnostics play a crucial role in disease prevention, detection and management. "The delivery of health care has proceeded for decades with a blind spot: diagnostic errors—inaccurate or delayed diagnoses—persist throughout all settings of care and continue to harm an unacceptable number of patients," according to a 2015 National Academy of Medicine report. That same report found as many as one out of five adverse events in the hospital result from these errors and they contribute to 10 percent of all patient deaths.
The pandemic should alter the diagnostic landscape. We already have a wealth of wearable and implantable devices, like glucose sensors to monitor blood sugar levels for diabetics, Apple's smart watch, electrocardiogram devices that can detect heart arrythmias, and heart pacemakers.
The Food and Drug Administration is working closely with in-home test developers to make accurate COVID-19 diagnostic tools readily available and has so far greenlighted three at-home collection test kits. Two, LabCorp's and Everlywell's, use nasal swabs to take samples. The third one is a spit test, using saliva samples, that was devised by a Rutgers University laboratory in partnership with Spectrum Solutions and Accurate Diagnostic Labs.
The only way to safely reopen is through large scale testing, but hospitals and doctors' offices are no longer the safest places.
In fact, DIY diagnostic company Everlywell, an Austin, Texas- based digital health company, already offers more than 30 at-home kits for everything from fertility to food sensitivity tests. Typically, consumers collect a saliva or finger-prick blood sample, dispatch it in a pre-paid shipping envelope to a laboratory, and a physician will review the results and send a report to consumers' smartphones.
Thanks to advances in technology, samples taken at home can now be preserved long enough to arrive intact at diagnostic laboratories. The key is showing the agency "transport and shipping don't change or interfere with the integrity of the samples," says Dr. Frank Ong, Everlywell's chief medical and scientific officer.
Ong is keenly aware of the importance of saturation testing because of the lessons learned by colleagues fighting the SARS pandemic in his family's native Taiwan in 2003. "In the beginning, doctors didn't know what they were dealing with and didn't protect themselves adequately," he says. "But over two years, they learned the hard way that there needs to be enough testing, contact tracing of those who have been exposed, and isolation of people who test positive. The value of at-home testing is that it can be done on the kind of broad basis that needs to happen for our country to get back to work."
Because of the pandemic, new policies have removed some of the barriers that impeded the widespread adoption of home-based diagnostics and telemedicine. Physicians can now practice across state lines, get reimbursed for telemedicine visits and use FaceTime to communicate with their patients, which had long been considered taboo because of privacy issues. Doctors and patients are becoming more comfortable and realizing the convenience and benefits of being able to do these things virtually.
Added to this, the only way to safely reopen for business without triggering a second and perhaps even more deadly wave of sickness is through large-scale testing, but hospitals and doctors' offices are no longer the safest places. "We don't want people sitting in a waiting room who later find out they're positive, and potentially infected everyone, including doctors and nurses," says Dr. Kavita Patel, a physician in Washington, DC who served as a policy director in the Obama White House.
In-home testing avoids the risks of direct exposure to the virus for both patients and health care professionals, who can dispense with cumbersome protective gear to take samples, and also enables people without reliable transportation or child-care to learn their status. "At home testing can be a critical component of our country's overall testing strategy," says Dr. Shantanu Nundy, chief medical officer at Accolade Health and on the faculty of the Milken Institute School of Public Health at George Washington University. "Once we're back at work, we need to be much more targeted, and have much more access to data and controlling those outbreaks as tightly as possible. The best way to do that is by leapfrogging clinics and being able to deliver tests at home for people who are disenfranchised by the current system."
In the not-too-distant future, in-home diagnostics could be a key component of precision medicine, which is customized care tailored specifically to each patient's individual needs. Like Stanford's smart toilet prototype, these ongoing surveillance tools will gather health data, ranging from exposures to toxins and pollutions in the environment to biochemical activity, like rising blood pressure, signs of inflammation, failing kidneys or tiny cancerous tumors, and provide continuous real-time information.
"These can be deeply personalized and enabled by smart phones, sensors and artificial intelligence," says USC's Leslie Saxon. "We'll be seeing the floodgates opening to patients accessing medical services through the same devices that they access other things, and leveraging these tools for our health and to fine tune disease management in a model of care that is digitally enabled."
[Editor's Note: This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]
Cleaning has taken on a whole new meaning in Frank Mosco's household during the COVID-19 pandemic. There's a protocol for everything he and his two teenage daughters do.
Experts agree that over-disinfecting is better than inadequate disinfecting, especially during a pandemic.
"We wipe down every package that comes into the house and the items inside," says Mosco, a technologist and social justice activist in Hastings-on-Hudson, N.Y. "If it's a fruit or vegetable, I use vinegar and water, or water and soap. Then we throw out the boxes, clean up the table, and wash our hands." Only then do they put items away.
As the novel coronavirus continues to pose an invisible threat, parents of infants to adolescents are pondering how vigorously and frequently to clean and disinfect surfaces at home and apply hand sanitizer in public. They also fret over whether there can be too much of a good thing: Will making everything as seemingly germ-free as possible reduce immunity down the road?
Experts agree that over-disinfecting is better than inadequate disinfecting, especially during a pandemic. Every family should assess their particular risks. Factors to consider include pre-existing medical conditions, the number of people living in the same home, and whether anyone works in a hospital or other virus-prone environment, says Kari Debbink, assistant professor of biology at Bowie State University in Bowie, Maryland.
Constantly cleaning everything in sight isn't necessary, she explains, because coronavirus tends to spread mainly via immediate contact with respiratory droplets—catching it from surfaces is a less-likely scenario. The longer the virus stays on a surface, the less contagious it becomes.
Some parents worry that their children's growing bodies may become accustomed to an environment that is "too clean." Debbink, a virologist, offers a salient reminder: "The immune system comes into contact with many, many different antigens every day, and it is 'trained' from birth onwards to respond to pathogens. Doing a little more cleansing and disinfecting during the pandemic will not weaken the immune system."
Other experts agree. "There should be no negative outcome to properly washing your hands more frequently," says Stacey Schultz-Cherry, an infectious diseases specialist at St. Jude Children's Research Hospital in Memphis, Tennessee. "Even with enhanced disinfection, kids are still getting exposed to immune-boosting microbes from playing outside, having pets, etc."
"There's no reason why hand sanitizer would weaken anyone's immune system of any age."
Applying hand sanitizer consisting of at least 60 percent alcohol helps clean hands while outdoors, says Angela Rasmussen, associate research scientist and a virologist at Columbia University's Mailman School of Public Health in New York. "There's no reason why hand sanitizer would weaken anyone's immune system of any age," she adds, and recommends moisturizer so hands don't dry out from frequent use. Meanwhile, "cleaning and disinfecting at home also don't have an impact on antiviral immunity, in kids or adults."
With the coronavirus foremost in parents' minds, Patricia Garcia, a pediatric hospitalist, has fielded many questions about how thoroughly they should wipe, rub, scrub, or mop. As medical director of Connecticut Children's Healthy Homes Program in Hartford, which takes aim at toxins and other housing hazards, she reassures them with this mantra: "You're never going to get it perfectly sterilized, and that's okay."
To quell some of these concerns, in March the U.S. Environmental Protection Agency (EPA) released a list of products for household use. None of these products have been specifically tested against SARS-CoV-2, the novel coronavirus that causes COVID-19. But the agency expects these products to be effective because they have demonstrated efficacy against a different human coronavirus similar to SARS-CoV-2 or an even harder-to-kill virus.
Many products on the list contain isopropyl alcohol or hydrogen peroxide. "When using an EPA-registered disinfectant," the agency's website instructs, "follow the label directions for safe, effective use. Make sure to follow the contact time, which is the amount of time the surface should be visibly wet."
Bear in mind that not all cleaners actually disinfect, cautions Alan Woolf, a pediatrician at Boston Children's Hospital who directs its environmental health center and is a professor at Harvard Medical School. Some cleaners remove visible dirt, grease, and grime, but they don't kill viruses. Disinfectants by their nature inactivate both bacteria and viruses. "That's an important distinction," Woolf says.
Frequently touched surfaces—for instance, doorknobs, light switches, toilet-flushing levers, and countertops—should not only be cleaned, but also disinfected at least daily during a pandemic if someone in the household is sick. The objects one touches upon coming home are the ones most likely to become contaminated with viruses, experts say.
Before bringing items inside, "it might be good to clear off a counter space where they will be placed," says Debbink, the biology professor and virologist. "This way, they come into contact with as few items and surfaces as possible."
If space permits, another option would be to set aside nonperishable items. "I've heard of some families putting things in a 'mud room' and closing the door for 48 hours, some leaving things in their garage or car trunk," says Stephanie Holm, co-director of the Western States Pediatric Environmental Health Specialty Unit at the University of California, San Francisco. "Letting new purchases sit for 48 hours undisturbed would greatly reduce the number of viable viruses present."
Cleaning surfaces is recommended before disinfecting them. Holm suggests using unscented soap and microfiber cloths instead of paper towels, which can transmit bacteria and viruses from one area to another.
Soap has the power to eradicate viruses with at least 20 seconds of contact time. It attacks the coronavirus's protective coat, explains infectious diseases specialist Schultz-Cherry. "If you destroy the coat, the virus is no longer infectious. Influenza virus is also very sensitive to soap."
"The most important thing that parents should do for children's immune systems is make sure they are up to date on all their vaccines."
For cribs, toys, and other mouth-contact surfaces, sanitizing with soap and water, not disinfectants, is advisable, says pediatrician Woolf. Fresh fruits and vegetables also can be cleaned with soap, removing dirt and pesticide residue, he adds.
"Some parents are nervous about using disinfectant on toys, which is understandable, considering many toys end up in children's mouths, so soap and water can be an alternative," says pediatrician Garcia, who recommends using hot water.
While some toys can go in the washing machine and dryer or dishwasher, others need to be cleaned by hand, with dish soap or a delicate detergent, as indicated on their labels. But toys with electrical components cannot be submerged in water, in which case consulting the EPA's list of disinfectants may be a parent's best option, she says.
Labels on the back of cleaning and disinfecting products also contain specific instructions. Not allowing a liquid to sit on a surface for the recommended time results in exposure to chemicals without even accomplishing the intended purpose of disinfection. For most household bleach-containing agents, the advisable "dwell time" is 10 minutes. "Many people don't realize this," says Holm, the environmental health specialist who also trained as a physician.
Beware of combining any type of cleaners or disinfectants that aren't already premixed. Doing so can release harmful gases into the air, she cautions.
During the pandemic, Mosco and his daughters have been very conscientious about decontaminating whatever comes through their doors. Mosco says he doesn't believe the family is overusing cleaning and disinfecting products. Although he's fastidious, he says, "a completely sterile environment is not the goal."
His mother, who was a nurse, instilled in him that exposure to some bacteria is a good thing. In turn, he "always encouraged his kids to play with animals, and to have fun in sand and dirt, with plenty of sunlight to keep their immune systems strong."
Even though a vaccine for coronavirus currently doesn't exist, parents can take some comfort in the best weapon available today to protect kids from deadly pathogens: "The most important thing that parents should do for children's immune systems," says virologist Rasmussen, "is make sure they are up to date on all their vaccines."