Is Alzheimer's Research On the Wrong Track?
"The graveyard of hope." That's what experts call the quest for effective Alzheimer's treatments, a two-decade effort that has been marked by one costly and high-profile failure after another. Nearly all of the drugs tested target one of the key hallmarks of Alzheimer's disease: amyloid plaques, the barnacle-like proteins long considered the culprits behind the memory-robbing ravages of the disease. Yet all the anti-amyloid drugs have flopped miserably, prompting some scientists to believe we've fingered the wrong villain.
"We're flogging a dead horse," says Peter Davies, PhD, an Alzheimer's researcher at the Feinstein Institute for Medical Research in New York. "The fact that no one's gotten better suggests that you have the wrong mechanism."
If the naysayers are right, how could a scientific juggernaut of this magnitude—involving hundreds of scientists in academia and industry at a cost of tens of billions of dollars--be so far off the mark? There are no easy answers, but some experts believe this calls into question how research is conducted and blame part of the failure on the insular culture of the scientific aristocracy at leading academic institutions.
"The field began to be dominated by narrow views."
"The field began to be dominated by narrow views," says George Perry, PhD, an Alzheimer's researcher and dean of the College of Sciences at the University of Texas in San Antonio. "The people pushing this were incredibly articulate, powerful and smart. They'd go to scientific meetings and all hang around with each other and they'd self-reinforce."
In fairness, there was solid science driving this. Post-mortem analyses of Alzheimer's patients found their brains were riddled with amyloid plaques. People with a strong family history of Alzheimer's had genetic mutations in the genes that encode for the production of amyloids. And in animal studies, scientists found that if amyloids were inserted into the brains of transgenic mice, they exhibited signs of memory loss. Remove the amyloids and they suddenly got better. This body of research helped launch the Amyloid Cascade Hypothesis of the disease in 1992—which has driven research ever since.
Scientists believed that the increase in the production of these renegade proteins, which form sticky plaques and collect outside of the nerve cells in the brain, triggers a series of events that interfere with the signaling system between synapses. This seems to prevent cells from relaying messages or talking to each other, causing memory loss, confusion and increasing difficulties doing the normal tasks of life. The path forward seemed clear: stop amyloid production and prevent disease progression. "We were going after the obvious abnormality," says Dr. David Knopman, a neurologist and Alzheimer's researcher at the Mayo Clinic in Rochester, Minnesota.
"Why wouldn't you do that?" Why ideed.
In hindsight, though, there was no real smoking gun—no one ever showed precisely how the production of amyloids instigates the destruction of vital brain circuits.
"Amyloids are clearly important," says Perry, "but they have not proven to be necessary and sufficient for the development of this disease."
Ironically, there have been hints all along that amyloids may not be toxic bad boys.
A handful of studies revealed that amyloid proteins are produced in healthy brains to protect synapses. Research on animal models that mimic diseases suggest that certain forms of amyloids can ease damage from strokes, traumatic brain injuries and even heart attacks. In a 2013 study, to cite just one example, a Stanford University team injected synthetic amyloids into paralyzed mice with an inflammatory disorder similar to multiple sclerosis. Instead of worsening their symptoms—which is what the researchers expected to happen--the mice could suddenly walk again. Remove the amyloids, and they became paralyzed once more.
Still other studies suggest amyloids may actually function as molecular guardians dispatched to silence inflammation and mop up errant cells after an injury as part of the body's waste management system. "The presence of amyloids is a protective response to something going wrong, a threat," says Dr. Dale Bredesen, a UCLA neurologist. "But the problem arises when the threats are chronic, multiple, unrelenting and intense. The defenses the brain mounts are also intense and these protective mechanisms cross the line into causing harm, and killing the very synapses and brain cells the amyloid was called up to protect."
So how did research get derailed?
In a way, we're victims of our own success, critics say.
Early medical triumphs in the heady post-World War II era, like the polio vaccine that eradicated the crippling childhood killer, or antibiotics, reinforced the magic bullet idea of curing disease--find a target and then hit it relentlessly. That's why when scientists made the link between amyloids and disease progression, Big Pharma jumped on the bandwagon in hopes of inventing a trillion-dollar drug. This approach is fine when you have an acute illness, like an infectious disease that's caused by one agent, but not for something as complicated as Alzheimer's.
The other piece of the problem is the dwindling federal dollars for basic research. Maverick scientists find it difficult to secure funding, which means that other possible targets or approaches remained relatively unexplored—and drug companies are understandably reluctant to sponsor fishing expeditions with little guarantee of a payoff. "Very influential people were driving this hypothesis," says Davies, and with careers on the line, "there was not enough objectivity or skepticism about that hypothesis."
Still, no one is disputing the importance of anti-amyloid drugs—and ongoing clinical trials, like the DIAN and A4 studies, are intervening earlier in patients who are at a high risk of developing Alzheimer's, but before they're symptomatic. "The only way to know if this is really a dead end is if you take it as far as it can go," says Knopman. "I believe the A4 study is the proper way to test the amyloid hypothesis."
But according to some experts, the latest thinking is that Alzheimer's is triggered by a range of factors, including genetics, poor diet, stress and lack of exercise.
"Alzheimer's is like other chronic age-related diseases and is multi-factorial," says Perry. "Modulating amyloids may have value but other avenues need to be explored."
If you look back on the last century of scientific achievements, you might notice that most of the scientists we celebrate are overwhelmingly white, while scientists of color take a backseat. Since the Nobel Prize was introduced in 1901, for example, no black scientists have landed this prestigious award.
The work of black women scientists has gone unrecognized in particular. Their work uncredited and often stolen, black women have nevertheless contributed to some of the most important advancements of the last 100 years, from the polio vaccine to GPS.
Here are five black women who have changed science forever.
Dr. May Edward Chinn
Dr. May Edward Chinn practicing medicine in Harlem
George B. Davis, PhD.
Chinn was born to poor parents in New York City just before the start of the 20th century. Although she showed great promise as a pianist, playing with the legendary musician Paul Robeson throughout the 1920s, she decided to study medicine instead. Chinn, like other black doctors of the time, were barred from studying or practicing in New York hospitals. So Chinn formed a private practice and made house calls, sometimes operating in patients’ living rooms, using an ironing board as a makeshift operating table.
Chinn worked among the city’s poor, and in doing this, started to notice her patients had late-stage cancers that often had gone undetected or untreated for years. To learn more about cancer and its prevention, Chinn begged information off white doctors who were willing to share with her, and even accompanied her patients to other clinic appointments in the city, claiming to be the family physician. Chinn took this information and integrated it into her own practice, creating guidelines for early cancer detection that were revolutionary at the time—for instance, checking patient health histories, checking family histories, performing routine pap smears, and screening patients for cancer even before they showed symptoms. For years, Chinn was the only black female doctor working in Harlem, and she continued to work closely with the poor and advocate for early cancer screenings until she retired at age 81.
Alice Ball
Pictorial Press Ltd/Alamy
Alice Ball was a chemist best known for her groundbreaking work on the development of the “Ball Method,” the first successful treatment for those suffering from leprosy during the early 20th century.
In 1916, while she was an undergraduate student at the University of Hawaii, Ball studied the effects of Chaulmoogra oil in treating leprosy. This oil was a well-established therapy in Asian countries, but it had such a foul taste and led to such unpleasant side effects that many patients refused to take it.
So Ball developed a method to isolate and extract the active compounds from Chaulmoogra oil to create an injectable medicine. This marked a significant breakthrough in leprosy treatment and became the standard of care for several decades afterward.
Unfortunately, Ball died before she could publish her results, and credit for this discovery was given to another scientist. One of her colleagues, however, was able to properly credit her in a publication in 1922.
Henrietta Lacks
onathan Newton/The Washington Post/Getty
The person who arguably contributed the most to scientific research in the last century, surprisingly, wasn’t even a scientist. Henrietta Lacks was a tobacco farmer and mother of five children who lived in Maryland during the 1940s. In 1951, Lacks visited Johns Hopkins Hospital where doctors found a cancerous tumor on her cervix. Before treating the tumor, the doctor who examined Lacks clipped two small samples of tissue from Lacks’ cervix without her knowledge or consent—something unthinkable today thanks to informed consent practices, but commonplace back then.
As Lacks underwent treatment for her cancer, her tissue samples made their way to the desk of George Otto Gey, a cancer researcher at Johns Hopkins. He noticed that unlike the other cell cultures that came into his lab, Lacks’ cells grew and multiplied instead of dying out. Lacks’ cells were “immortal,” meaning that because of a genetic defect, they were able to reproduce indefinitely as long as certain conditions were kept stable inside the lab.
Gey started shipping Lacks’ cells to other researchers across the globe, and scientists were thrilled to have an unlimited amount of sturdy human cells with which to experiment. Long after Lacks died of cervical cancer in 1951, her cells continued to multiply and scientists continued to use them to develop cancer treatments, to learn more about HIV/AIDS, to pioneer fertility treatments like in vitro fertilization, and to develop the polio vaccine. To this day, Lacks’ cells have saved an estimated 10 million lives, and her family is beginning to get the compensation and recognition that Henrietta deserved.
Dr. Gladys West
Andre West
Gladys West was a mathematician who helped invent something nearly everyone uses today. West started her career in the 1950s at the Naval Surface Warfare Center Dahlgren Division in Virginia, and took data from satellites to create a mathematical model of the Earth’s shape and gravitational field. This important work would lay the groundwork for the technology that would later become the Global Positioning System, or GPS. West’s work was not widely recognized until she was honored by the US Air Force in 2018.
Dr. Kizzmekia "Kizzy" Corbett
TIME Magazine
At just 35 years old, immunologist Kizzmekia “Kizzy” Corbett has already made history. A viral immunologist by training, Corbett studied coronaviruses at the National Institutes of Health (NIH) and researched possible vaccines for coronaviruses such as SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome).
At the start of the COVID pandemic, Corbett and her team at the NIH partnered with pharmaceutical giant Moderna to develop an mRNA-based vaccine against the virus. Corbett’s previous work with mRNA and coronaviruses was vital in developing the vaccine, which became one of the first to be authorized for emergency use in the United States. The vaccine, along with others, is responsible for saving an estimated 14 million lives.On today’s episode of Making Sense of Science, I’m honored to be joined by Dr. Paul Song, a physician, oncologist, progressive activist and biotech chief medical officer. Through his company, NKGen Biotech, Dr. Song is leveraging the power of patients’ own immune systems by supercharging the body’s natural killer cells to make new treatments for Alzheimer’s and cancer.
Whereas other treatments for Alzheimer’s focus directly on reducing the build-up of proteins in the brain such as amyloid and tau in patients will mild cognitive impairment, NKGen is seeking to help patients that much of the rest of the medical community has written off as hopeless cases, those with late stage Alzheimer’s. And in small studies, NKGen has shown remarkable results, even improvement in the symptoms of people with these very progressed forms of Alzheimer’s, above and beyond slowing down the disease.
In the realm of cancer, Dr. Song is similarly setting his sights on another group of patients for whom treatment options are few and far between: people with solid tumors. Whereas some gradual progress has been made in treating blood cancers such as certain leukemias in past few decades, solid tumors have been even more of a challenge. But Dr. Song’s approach of using natural killer cells to treat solid tumors is promising. You may have heard of CAR-T, which uses genetic engineering to introduce cells into the body that have a particular function to help treat a disease. NKGen focuses on other means to enhance the 40 plus receptors of natural killer cells, making them more receptive and sensitive to picking out cancer cells.
Paul Y. Song, MD is currently CEO and Vice Chairman of NKGen Biotech. Dr. Song’s last clinical role was Asst. Professor at the Samuel Oschin Cancer Center at Cedars Sinai Medical Center.
Dr. Song served as the very first visiting fellow on healthcare policy in the California Department of Insurance in 2013. He is currently on the advisory board of the Pritzker School of Molecular Engineering at the University of Chicago and a board member of Mercy Corps, The Center for Health and Democracy, and Gideon’s Promise.
Dr. Song graduated with honors from the University of Chicago and received his MD from George Washington University. He completed his residency in radiation oncology at the University of Chicago where he served as Chief Resident and did a brachytherapy fellowship at the Institute Gustave Roussy in Villejuif, France. He was also awarded an ASTRO research fellowship in 1995 for his research in radiation inducible gene therapy.
With Dr. Song’s leadership, NKGen Biotech’s work on natural killer cells represents cutting-edge science leading to key findings and important pieces of the puzzle for treating two of humanity’s most intractable diseases.
Show links
- Paul Song LinkedIn
- NKGen Biotech on Twitter - @NKGenBiotech
- NKGen Website: https://nkgenbiotech.com/
- NKGen appoints Paul Song
- Patient Story: https://pix11.com/news/local-news/long-island/promising-new-treatment-for-advanced-alzheimers-patients/
- FDA Clearance: https://nkgenbiotech.com/nkgen-biotech-receives-ind-clearance-from-fda-for-snk02-allogeneic-natural-killer-cell-therapy-for-solid-tumors/Q3 earnings data: https://www.nasdaq.com/press-release/nkgen-biotech-inc.-reports-third-quarter-2023-financial-results-and-business