Last minute holiday gifts for the bio-inspired
“Merry Christmas! Isn’t it fun to say Merry Christmas to everyone? Time for a party and presents and things that make children happy and give their hearts wings!” go the lyrics of the popular Christmas poem. But adults (of various religions) need their gifts this time of year, too. For the biologically inspired big children, the process of finding the right fit can be daunting. To inform your choices in both conventional and unconventional ways, Leaps.org is presenting a roundup of the coolest bio-products related to health, nutrition, gaming, lifestyle and more.
AYO Circadian Light Therapy Wearable
We don’t hear it tick, but we have our own clock inside our body–more precisely, circadian clocks. Our cells contain tiny molecular clocks that keep track of our circadian rhythms, or our sleep and metabolism pattern and activity levels, on a daily basis. Chronic circadian disruptions can lead to sleep disorders, poor energy levels, weight gain, lousy mood, and sped-up aging, as well as increased risk for every “modern” disease out there, from diabetes to cancer.
Now, high-tech glasses have been developed that attempt to mimic the benefits of sunlight. In the morning and afternoon, these glasses shed blue light into your eyes to stimulate the master clock at the base of your brain for less drowsiness. The technology's design draws from an area of research, chronobiology, that received a Nobel Prize in 2017 and has become increasingly active in recent years.
“We have been developing and testing the AYO Circadian Health solution for the past five years in collaboration with some of the world's leading experts and researchers in chronobiology, light therapy and health,” said Alexander Dimitrov, co-creator of AYO. “We have done studies with over 25,000 participants, and over one million light sessions,” Dimotrov continued, partnering with institutions such as Mount Sinai Hospital, City of Hope and the U.S. Department of Defense.
The technology could fundamentally reshape the way we view sleep, health and our daily calendars. And, when connecting to a mobile app, the glasses could minimize circadian disruptions for travelers between conflicting time zones.
($269)
myDNAge Test
It's not easy for many people to break free of their attachment to the concept of chronological age, which counts years by how many times we’ve circled the sun since the day we were born. Society lumps us all into one age bracket according to our date of birth but, lately, research is suggesting that we should do some serious deconditioning. According to these studies, the more accurate measure is your biological age, a measurement based on various biomarkers of the body’s overall health and resilience, regardless of your calendar age.
If you want to find out your “true” biological age, myDNAge is a test that focuses on epigenetics, or patterns of changes in DNA methylation, with some initial research pointing to its accuracy. It offers a snapshot of your epigenetic age as well as key biomarkers related to your metabolism, risk of Alzheimer's and more, according to Xiaojing Yang, group leader of epigenetics at myDNAge. “You can perform tests six to 12 months [apart] to track the impact of lifestyle changes,” Yang said. The kit could be a useful tool both for citizen scientists and biohacking veterans.
($299 for one kit–Use code NEWYEARNEWME to receive 50% off a second kit)
Prairie Sky Yak Cheese
Do you love cheese? Do you love exotic cheese? Do you have an interest in preserving biological and genetic diversity? If you answered yes to all three questions, yak cheese was made for you. This type of cheese typically comes from a free-range yak living 13,000 feet above surface level in the Tibetan Himalayas, a relative of the endangered Wild yak. (North America is home to at least 5,000 registered yaks.)
“When I learned that we had a piece of rare biodiversity to be preserved for future generations, I realized that the yak in North America needed a job,” said Nicole Geijer Porter, president of World Heritage Yak Conservancy (WHYC), an organization formed to protect heritage yak “If an animal cannot be beneficial to the rancher in some way, exclusively as pets and lawn ornaments, they will go extinct. Raised for meat they are often hybridized with cattle to grow bigger and faster, so they will also go extinct,” said Porter, an epigeneticist turned yak herder.
Each slice of cheese and piece of butter supports the genetic testing and tracking of Tibetan yak. (You can become a member of WHYC through the Adopt-A-Yak program). “This project is also of biological importance because of the low methane emission research on yak, and the high nutritional content of the milk and cheese,” said Porter.
As for flavor, the Prairie Sky Yak Gruyere is a semi-hard cheese with a nutty taste sometimes compared to chocolate; Tomme de Savoie is a semi-soft Alpine cheese reminiscent of a washed rind muenster; and the Yak Cheddar is made with yak milk following the classic English recipe from Wells Cathedral, with earthly and pungent flavors.
(Various prices; $59.95 for the Three Yak Cheese Flight Gift Box, $139.95 for the Regional Himalayan Yak Cheddar Gift Basket and more)
Bite Toothpaste Bits
The price of a healthy smile is steep. Each year over one billion plastic toothpaste tubes are thrown out, over 50 Empire State Buildings worth of these tubes end up in landfills or oceans, and many animals suffer and die each year in cruel tests for improving oral care in people.
Sustainable oral care is both an act of self-love and giving back to the environment. Bite is a toothpaste that boasts about its green practices for a reason: it uses recyclable glass bottles with aluminum lids that break down into sand after they’ve been used. For shipping, Bite uses kraft envelopes padded with recycled and compostable newspapers, and its boxes are made of fully recycled, corrugated cardboard and sealed with paper tape. Bite refills come in 100% home compostable pouches every four months (still no plastic).
Sustainability aside, there may be an element of fun to Bite – as you brush, a mint foam forms “like magic,” the company claims.
Fractional Laser Treatment for Skin
The environment is hard on our skin: from ultraviolet rays to pollution, a constant oxidative war is waged upon it, leading to loss of collagen and damage to the barrier function of the skin. A fractional laser treatment is a type of laser skin resurfacing procedure that essentially traumatizes the skin – in a good way - through subjecting a small area of it to tiny amounts of laser energy. The laser penetrates the second layer of skin, the dermis, leading to skin exfoliation, which stimulates collagen and elastin production.
The treatment may help with soothing acne scarring, correcting uneven skin tone and texture, and reducing wrinkles and fine lines, sun damage and age spots. Recent research suggests the fractional laser can help with improving skin elasticity and reducing the amount and depth of wrinkles, though there’s little to no evidence for any benefits for eyebags, dark circles, discolorations within the eye area and water retention.
(Typically, a single fractional laser treatment costs $750 for a small area, $1500 for a full facial treatment, and $2000 for full face.)
Gadgets and Apps to Measure Your Heart Rate Variability
Heart rate variability may sound like a condition that requires immediate medical treatment, but the more you have of it, the better for your health. Although you may think of the heart as a steadily beating metronome, there are actually small differences in the amount of time between each beat. These differences are called HRV, and having more HRV has been linked to better fitness and fewer diseases.
HRV is easy to measure with a range of gadgets on the market, including Fitbits and Oura Rings. Which product floats your boat is a matter of personal preference, but the Polar H10 chest strap offers some advantages. For example, you can measure your HRV with the Polar H10 while walking around, unlike some devices that require you to stay still while taking a reading.
Plus, the Polar sensor pairs with free apps such as Elite HRV that are great for tracking how your HRV changes over time. "HRV really helps you gauge if you're moving in a positive or negative direction" with your health, says Jason Moore, the CEO and founder of Elite HRV and Spren. Have fun experimenting over the holidays with different lifestyle habits that are associated with higher HRV, some studies show, such as intermittent fasting, regular exercise and just getting more sleep.
($89 for the Polar H10, $0 for the Elite HRV app)
FoodMarble AIRE2
Its predecessor, FOODMarble AIRE1 was a pocket-size breath-testing device that measured hydrogen on the breath. More hydrogen means less digestion, and the AIRE1 used advanced breathalyzer technology to figure out what exactly is going on with the gut. Now, the company has launched FoodMarble AIRE2, which also measures methane alongside with hydrogen. High levels of methane in the body may cause abdominal pain, bloating and constipation, cirrhosis of the liver and chronic pancreatitis. The AIRE2 also comes with haptic feedback to make it easier to use.
Research suggests that these breath tests are valid as at-home diagnostic tools for many digestive conditions. To get the most accurate results, though, it’s important to closely follow the recommended protocol - for example, you can’t eat or drink anything for 10 to 12 hours before the test.
($229)
Adventurist Backpack’s Classic Backpack
The Classic backpack is a perfect option for life science aficionados who enjoy getting outside and exploring in nature. Padding in the front and back provides extra protection for camera gear, laptop, and other electronics, and it's completely water-resistant so you can get outside in winter weather.
Nobility points: Adventurist Backpack Co. is partnered with national non-profit Feeding America, and every backpack sold helps provide 25 meals to families in need across the U.S.
($65)
This Saves Lives
Speaking of nobility points, you could load your new backpack with a food choice that helps feed others as well. In 2013, actors Kristin Bell, Ryan Devlin, Ravi Patel and Todd Grinnell teamed up to start This Saves Lives, which makes power bars full of vitamins and nutrients, and the company has a unique business model: for every bar you buy, a packet of food is sent to a child in need. In addition to offering essential nutrients, the bars are non-GMO, kosher and gluten-free. Note: This Saves Lives is owned by the same company, GOOD Worldwide, that owns Leaps.org.
(Wild Blueberry & Pistachio bars, $23.99)
NADI X Pants
Even if you’re a yoga zealot enjoying the benefits to your strength, balance and flexibility, chances are you're performing the movements sort of askew. Wearable technology wants to improve your yoga posture and these sleek yoga pants called NADI X have subtle electronic sensors that track how you place your hands, rotate your hips, and align your back. The leggings use haptic feedback (or vibrations on your skin) to slowly guide you into correct alignment. You can also combine the wearable with an app that contains 40 poses and fitting music. Even if you aren't into yoga, you could use the pants for a perfect stretching session. If you do use it for yoga poses, the pants will “speak” to you, letting out a soothing "om" sound once everything is perfect.
Meta Quest Pro VR headset
When it comes to perfecting virtual reality (VR), the Meta Quest Pro VR headset is one step ahead the rest. In a vibrant 3D virtual space, your Meta avatar has the ability to translate your real-life facial expressions into the virtual realm so the experience can feel more personal, while controllers track your movement and use haptic feedback to translate your hand gestures and finger actions into VR as well. Unlike its Quest 2 headset, Meta markets this Quest Pro headset, which was just released in October, as a great tool for work and business meetings, but you can also use it to play games, watch movies, or download fitness apps or mental-health related apps – some of which are designed to help you get boxing workouts with long-distance friends, fight your fear of heights or meditate in outer space.
Rouge Sur Mesure Custom Lip Color Creator
Beauty and artificial intelligence (AI) complement each other well in the new Yves Saint Laurent lip personalized color – which wants to put the final nail on the coffin of generic lipsticks. This is a lipstick printer at its core. You pair a device to your smartphone and then insert three lipstick cartridges into the base, each of which comes with a color palette (all four could create up to 4,000 lipstick shades). Particularly charming is the fact that you can take a photo of your outfit, and the app will suggest shades that match or clash it.
($299, cartridges $89 each)
Dairy-Free Cream Cheese and Meatless Breakfast Patties
On the environmental front again, meatless patties and dairy-free cream cheese constitute conscientious and delicious choices for vegans, vegetarians and pretty much anyone else. Chicago-based Nature's Fynd is worth checking out. It uses a microbe named Fusarium strain flavolapis, which has origins in an acidic hot spring at Yellowstone National Park.
“We use this remarkable microbe to grow Fy — a nutritional fungi protein that’s made into a wide variety of delicious and sustainable foods,” says Karuna Rawal, Nature’s Fynd CMO. Fy is grown via a breakthrough fermentation process using a fraction of the water, land, and energy compared to traditional protein sources.
It’s a sustainable way to grow food for Earth’s population,” but Nature’s Fynd isn’t just concentrating on Earth. The company recently partnered with NASA to send Fy to space. “As long as there’s an appropriately controlled environment, we can grow Fy anytime, anywhere. It could be a nutritious food source for astronauts on deep space missions," said Rawal.
CBD Oil
Biologically curious people may be especially interested in trying cannabinoid (CBD) oil. CBD is a natural and safe substance found in cannabis, which has been found to tackle anxiety and depression, reduce symptoms of post-traumatic stress disorder, help manage chronic pain and migraines, improve sleep patterns, and keep panic attacks at bay. Kanibi’s Isolate CBD Oil Tincture is a good choice as it is cinnamon-flavored and made in an FDA-inspected facility.
($109--25% off on your first order)
Govee RGBIC Floor Lamp
Another winner for anyone who's been hearing about the health benefits of obeying your circadian rhythms: "RGB" lights, or red-green-blue lights that can be operated by remote control to shine bright blue light during the day and then, with a few touches of your phone, bathe you in warmer, red light to get you ready for bed. Look for RGB bulbs to stick into the light fixtures you already have, or you could opt for the Govee floor lamp that syncs with an app on your phone (or Alexa) for circadian color changing. You can also put it on party mode and watch it shift across 16 million color shades in response to the rhythms and beats of Cuddle Up, Cozy Down Christmas and Hanukkah Oh Hanukkah.
($99)
PackPoint
If you suffer from packing anxiety (or incompetence), an app may take away the pain. PackPoint is an app that builds your packing list according to trip type, activities and weather. You add your trip details, select activities (fancy dinner, business meeting, or even workout are some examples), and PackPoint tells you what you need to bring to your destination. The app is free, but upgrading to Premium for a small fee lets you add your own activities and packing list items.
(Free, Premium Package $2.99)
Eternity Rose
Roses symbolize love, passion, innocence, friendship, and the disarming power of natural beauty. They wilt fast, though, and their spectacle is an unsettling reminder of the fragility of beauty and existence. Unless you dip the rose in 24 karat gold.
The Eternity Rose is put through an intricate three-month process of electroplating, or coating the rose with copper and then with other metals in micro-thin layers. You won’t have to see your flowers sag after a few days because these roses never die. The glitter of gold atop the natural rose (or platinum or silver–whatever you prefer) will fit right in with the Christmas Eve ambiance.
($169 for the gold rose)
In the 1966 movie "Fantastic Voyage," actress Raquel Welch and her submarine were shrunk to the size of a cell in order to eliminate a blood clot in a scientist's brain. Now, 55 years later, the scenario is becoming closer to reality.
California-based startup Bionaut Labs has developed a nanobot about the size of a grain of rice that's designed to transport medication to the exact location in the body where it's needed. If you think about it, the conventional way to deliver medicine makes little sense: A painkiller affects the entire body instead of just the arm that's hurting, and chemotherapy is flushed through all the veins instead of precisely targeting the tumor.
"Chemotherapy is delivered systemically," Bionaut-founder and CEO Michael Shpigelmacher says. "Often only a small percentage arrives at the location where it is actually needed."
But what if it was possible to send a tiny robot through the body to attack a tumor or deliver a drug at exactly the right location?
Several startups and academic institutes worldwide are working to develop such a solution but Bionaut Labs seems the furthest along in advancing its invention. "You can think of the Bionaut as a tiny screw that moves through the veins as if steered by an invisible screwdriver until it arrives at the tumor," Shpigelmacher explains. Via Zoom, he shares the screen of an X-ray machine in his Culver City lab to demonstrate how the half-transparent, yellowish device winds its way along the spine in the body. The nanobot contains a tiny but powerful magnet. The "invisible screwdriver" is an external magnetic field that rotates that magnet inside the device and gets it to move and change directions.
The current model has a diameter of less than a millimeter. Shpigelmacher's engineers could build the miniature vehicle even smaller but the current size has the advantage of being big enough to see with bare eyes. It can also deliver more medicine than a tinier version. In the Zoom demonstration, the micorobot is injected into the spine, not unlike an epidural, and pulled along the spine through an outside magnet until the Bionaut reaches the brainstem. Depending which organ it needs to reach, it could be inserted elsewhere, for instance through a catheter.
"The hope is that we can develop a vehicle to transport medication deep into the body," says Max Planck scientist Tian Qiu.
Imagine moving a screw through a steak with a magnet — that's essentially how the device works. But of course, the Bionaut is considerably different from an ordinary screw: "At the right location, we give a magnetic signal, and it unloads its medicine package," Shpigelmacher says.
To start, Bionaut Labs wants to use its device to treat Parkinson's disease and brain stem gliomas, a type of cancer that largely affects children and teenagers. About 300 to 400 young people a year are diagnosed with this type of tumor. Radiation and brain surgery risk damaging sensitive brain tissue, and chemotherapy often doesn't work. Most children with these tumors live less than 18 months. A nanobot delivering targeted chemotherapy could be a gamechanger. "These patients really don't have any other hope," Shpigelmacher says.
Of course, the main challenge of the developing such a device is guaranteeing that it's safe. Because tissue is so sensitive, any mistake could risk disastrous results. In recent years, Bionaut has tested its technology in dozens of healthy sheep and pigs with no major adverse effects. Sheep make a good stand-in for humans because their brains and spines are similar to ours.
The Bionaut device is about the size of a grain of rice.
Bionaut Labs
"As the Bionaut moves through brain tissue, it creates a transient track that heals within a few weeks," Shpigelmacher says. The company is hoping to be the first to test a nanobot in humans. In December 2022, it announced that a recent round of funding drew $43.2 million, for a total of 63.2 million, enabling more research and, if all goes smoothly, human clinical trials by early next year.
Once the technique has been perfected, further applications could include addressing other kinds of brain disorders that are considered incurable now, such as Alzheimer's or Huntington's disease. "Microrobots could serve as a bridgehead, opening the gateway to the brain and facilitating precise access of deep brain structure – either to deliver medication, take cell samples or stimulate specific brain regions," Shpigelmacher says.
Robot-assisted hybrid surgery with artificial intelligence is already used in state-of-the-art surgery centers, and many medical experts believe that nanorobotics will be the instrument of the future. In 2016, three scientists were awarded the Nobel Prize in Chemistry for their development of "the world's smallest machines," nano "elevators" and minuscule motors. Since then, the scientific experiments have progressed to the point where applicable devices are moving closer to actually being implemented.
Bionaut's technology was initially developed by a research team lead by Peer Fischer, head of the independent Micro Nano and Molecular Systems Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, Germany. Fischer is considered a pioneer in the research of nano systems, which he began at Harvard University more than a decade ago. He and his team are advising Bionaut Labs and have licensed their technology to the company.
"The hope is that we can develop a vehicle to transport medication deep into the body," says Max Planck scientist Tian Qiu, who leads the cooperation with Bionaut Labs. He agrees with Shpigelmacher that the Bionaut's size is perfect for transporting medication loads and is researching potential applications for even smaller nanorobots, especially in the eye, where the tissue is extremely sensitive. "Nanorobots can sneak through very fine tissue without causing damage."
In "Fantastic Voyage," Raquel Welch's adventures inside the body of a dissident scientist let her swim through his veins into his brain, but her shrunken miniature submarine is attacked by antibodies; she has to flee through the nerves into the scientist's eye where she escapes into freedom on a tear drop. In reality, the exit in the lab is much more mundane. The Bionaut simply leaves the body through the same port where it entered. But apart from the dramatization, the "Fantastic Voyage" was almost prophetic, or, as Shpigelmacher says, "Science fiction becomes science reality."
This article was first published by Leaps.org on April 12, 2021.
How the Human Brain Project Built a Mind of its Own
In 2009, neuroscientist Henry Markram gave an ambitious TED talk. “Our mission is to build a detailed, realistic computer model of the human brain,” he said, naming three reasons for this unmatched feat of engineering. One was because understanding the human brain was essential to get along in society. Another was because experimenting on animal brains could only get scientists so far in understanding the human ones. Third, medicines for mental disorders weren’t good enough. “There are two billion people on the planet that are affected by mental disorders, and the drugs that are used today are largely empirical,” Markram said. “I think that we can come up with very concrete solutions on how to treat disorders.”
Markram's arguments were very persuasive. In 2013, the European Commission launched the Human Brain Project, or HBP, as part of its Future and Emerging Technologies program. Viewed as Europe’s chance to try to win the “brain race” between the U.S., China, Japan, and other countries, the project received about a billion euros in funding with the goal to simulate the entire human brain on a supercomputer, or in silico, by 2023.
Now, after 10 years of dedicated neuroscience research, the HBP is coming to an end. As its many critics warned, it did not manage to build an entire human brain in silico. Instead, it achieved a multifaceted array of different goals, some of them unexpected.
Scholars have found that the project did help advance neuroscience more than some detractors initially expected, specifically in the area of brain simulations and virtual models. Using an interdisciplinary approach of combining technology, such as AI and digital simulations, with neuroscience, the HBP worked to gain a deeper understanding of the human brain’s complicated structure and functions, which in some cases led to novel treatments for brain disorders. Lastly, through online platforms, the HBP spearheaded a previously unmatched level of global neuroscience collaborations.
Simulating a human brain stirs up controversy
Right from the start, the project was plagued with controversy and condemnation. One of its prominent critics was Yves Fregnac, a professor in cognitive science at the Polytechnic Institute of Paris and research director at the French National Centre for Scientific Research. Fregnac argued in numerous articles that the HBP was overfunded based on proposals with unrealistic goals. “This new way of over-selling scientific targets, deeply aligned with what modern society expects from mega-sciences in the broad sense (big investment, big return), has been observed on several occasions in different scientific sub-fields,” he wrote in one of his articles, “before invading the field of brain sciences and neuromarketing.”
"A human brain model can simulate an experiment a million times for many different conditions, but the actual human experiment can be performed only once or a few times," said Viktor Jirsa, a professor at Aix-Marseille University.
Responding to such critiques, the HBP worked to restructure the effort in its early days with new leadership, organization, and goals that were more flexible and attainable. “The HBP got a more versatile, pluralistic approach,” said Viktor Jirsa, a professor at Aix-Marseille University and one of the HBP lead scientists. He believes that these changes fixed at least some of HBP’s issues. “The project has been on a very productive and scientifically fruitful course since then.”
After restructuring, the HBP became a European hub on brain research, with hundreds of scientists joining its growing network. The HBP created projects focused on various brain topics, from consciousness to neurodegenerative diseases. HBP scientists worked on complex subjects, such as mapping out the brain, combining neuroscience and robotics, and experimenting with neuromorphic computing, a computational technique inspired by the human brain structure and function—to name just a few.
Simulations advance knowledge and treatment options
In 2013, it seemed that bringing neuroscience into a digital age would be farfetched, but research within the HBP has made this achievable. The virtual maps and simulations various HBP teams create through brain imaging data make it easier for neuroscientists to understand brain developments and functions. The teams publish these models on the HBP’s EBRAINS online platform—one of the first to offer access to such data to neuroscientists worldwide via an open-source online site. “This digital infrastructure is backed by high-performance computers, with large datasets and various computational tools,” said Lucy Xiaolu Wang, an assistant professor in the Resource Economics Department at the University of Massachusetts Amherst, who studies the economics of the HBP. That means it can be used in place of many different types of human experimentation.
Jirsa’s team is one of many within the project that works on virtual brain models and brain simulations. Compiling patient data, Jirsa and his team can create digital simulations of different brain activities—and repeat these experiments many times, which isn’t often possible in surgeries on real brains. “A human brain model can simulate an experiment a million times for many different conditions,” Jirsa explained, “but the actual human experiment can be performed only once or a few times.” Using simulations also saves scientists and doctors time and money when looking at ways to diagnose and treat patients with brain disorders.
Compiling patient data, scientists can create digital simulations of different brain activities—and repeat these experiments many times.
The Human Brain Project
Simulations can help scientists get a full picture that otherwise is unattainable. “Another benefit is data completion,” added Jirsa, “in which incomplete data can be complemented by the model. In clinical settings, we can often measure only certain brain areas, but when linked to the brain model, we can enlarge the range of accessible brain regions and make better diagnostic predictions.”
With time, Jirsa’s team was able to move into patient-specific simulations. “We advanced from generic brain models to the ability to use a specific patient’s brain data, from measurements like MRI and others, to create individualized predictive models and simulations,” Jirsa explained. He and his team are working on this personalization technique to treat patients with epilepsy. According to the World Health Organization, about 50 million people worldwide suffer from epilepsy, a disorder that causes recurring seizures. While some epilepsy causes are known others remain an enigma, and many are hard to treat. For some patients whose epilepsy doesn’t respond to medications, removing part of the brain where seizures occur may be the only option. Understanding where in the patients’ brains seizures arise can give scientists a better idea of how to treat them and whether to use surgery versus medications.
“We apply such personalized models…to precisely identify where in a patient’s brain seizures emerge,” Jirsa explained. “This guides individual surgery decisions for patients for which surgery is the only treatment option.” He credits the HBP for the opportunity to develop this novel approach. “The personalization of our epilepsy models was only made possible by the Human Brain Project, in which all the necessary tools have been developed. Without the HBP, the technology would not be in clinical trials today.”
Personalized simulations can significantly advance treatments, predict the outcome of specific medical procedures and optimize them before actually treating patients. Jirsa is watching this happen firsthand in his ongoing research. “Our technology for creating personalized brain models is now used in a large clinical trial for epilepsy, funded by the French state, where we collaborate with clinicians in hospitals,” he explained. “We have also founded a spinoff company called VB Tech (Virtual Brain Technologies) to commercialize our personalized brain model technology and make it available to all patients.”
The Human Brain Project created a level of interconnectedness within the neuroscience research community that never existed before—a network not unlike the brain’s own.
Other experts believe it’s too soon to tell whether brain simulations could change epilepsy treatments. “The life cycle of developing treatments applicable to patients often runs over a decade,” Wang stated. “It is still too early to draw a clear link between HBP’s various project areas with patient care.” However, she admits that some studies built on the HBP-collected knowledge are already showing promise. “Researchers have used neuroscientific atlases and computational tools to develop activity-specific stimulation programs that enabled paraplegic patients to move again in a small-size clinical trial,” Wang said. Another intriguing study looked at simulations of Alzheimer’s in the brain to understand how it evolves over time.
Some challenges remain hard to overcome even with computer simulations. “The major challenge has always been the parameter explosion, which means that many different model parameters can lead to the same result,” Jirsa explained. An example of this parameter explosion could be two different types of neurodegenerative conditions, such as Parkinson’s and Huntington’s diseases. Both afflict the same area of the brain, the basal ganglia, which can affect movement, but are caused by two different underlying mechanisms. “We face the same situation in the living brain, in which a large range of diverse mechanisms can produce the same behavior,” Jirsa said. The simulations still have to overcome the same challenge.
Understanding where in the patients’ brains seizures arise can give scientists a better idea of how to treat them and whether to use surgery versus medications.
The Human Brain Project
A network not unlike the brain’s own
Though the HBP will be closing this year, its legacy continues in various studies, spin-off companies, and its online platform, EBRAINS. “The HBP is one of the earliest brain initiatives in the world, and the 10-year long-term goal has united many researchers to collaborate on brain sciences with advanced computational tools,” Wang said. “Beyond the many research articles and projects collaborated on during the HBP, the online neuroscience research infrastructure EBRAINS will be left as a legacy even after the project ends.”
Those who worked within the HBP see the end of this project as the next step in neuroscience research. “Neuroscience has come closer to very meaningful applications through the systematic link with new digital technologies and collaborative work,” Jirsa stated. “In that way, the project really had a pioneering role.” It also created a level of interconnectedness within the neuroscience research community that never existed before—a network not unlike the brain’s own. “Interconnectedness is an important advance and prerequisite for progress,” Jirsa said. “The neuroscience community has in the past been rather fragmented and this has dramatically changed in recent years thanks to the Human Brain Project.”
According to its website, by 2023 HBP’s network counted over 500 scientists from over 123 institutions and 16 different countries, creating one of the largest multi-national research groups in the world. Even though the project hasn’t produced the in-silico brain as Markram envisioned it, the HBP created a communal mind with immense potential. “It has challenged us to think beyond the boundaries of our own laboratories,” Jirsa said, “and enabled us to go much further together than we could have ever conceived going by ourselves.”