So-Called “Puppy Mills” Are Not All As Bad As We Think, Pioneering Research Suggests
Candace Croney joined the faculty at Purdue University in 2011, thinking her job would focus on the welfare of livestock and poultry in Indiana. With bachelor's, master's, and doctoral degrees in animal sciences, her work until then had centered on sheep, cattle, and pigs. She'd even had the esteemed animal behaviorist Temple Grandin help shape her master's research project.
Croney's research has become the first of its kind in the world—and it's challenging our understanding of how dog breeding is being done.
Then came an email from a new colleague asking Croney to discuss animal welfare with some of Indiana's commercial dog breeders, the kind who produce large quantities of puppies for sale in pet stores.
"I didn't even know the term commercial breeders," Croney says. "I'd heard the term 'puppy millers.' That's pretty much what I knew."
She went to the first few kennels and braced herself for an upsetting experience. She's a dog lover who has fostered shelter mutts and owned one, and she'd seen the stories: large-scale breeders being called cruel and evil, lawmakers trying to ban the sale of commercially bred puppies, and constant encouragement to rescue a dog instead of paying into a greedy, heartless "puppy mill" industry.
But when she got to the kennels, she was surprised. While she encountered a number of things she didn't like about the infrastructure at the older facilities—a lack of ventilation, a lot of noise, bad smells—most of the dogs themselves were clean. The majority didn't have physical problems. No open sores. No battered bodies. Nothing like what she'd seen online.
But still, the way the dogs acted gave her pause.
"Things were, in many regards, better than I thought they would be," Croney says. "Google told me the dogs would be physically a mess, and they weren't, but behaviorally, things were jumping out at me."
While she did note that some of the breeders had play yards for their pups, a number of the dogs feared new people and things like leashes because they hadn't been exposed to enough of them. Some of the dogs also seemed to lack adequate toys, activities, and games to keep them mentally and physically stimulated.
But she was there strictly as a representative of the university to ask questions and offer feedback, no more or less. A few times, she says, she felt like the breeders wanted her to endorse what they were doing, "and I immediately got my back up about that. I did not want my name used to validate things that I could tell I didn't agree with. It was uncomfortable from that perspective."
After sharing the animal-welfare information her colleague had requested, Croney figured that was that. She never expected to be in a commercial kennel again. But six months later, her phone rang. Some of the people she'd met were involved in legislative lobbying, and they were trying to write welfare standards for Indiana's commercial breeders to follow.
In the continuing battle over what is, and is not, a "puppy mill," they wanted somebody with a strong research background to set a baseline standard, somebody who would actually bring objectivity to the breeder-activist conflict without being on one side or the other.
In other words, they wanted Croney's help to figure out not only appropriate enclosure sizes, but also requirements for socialization and enrichment activities—stimulation she knew the dogs desperately needed.
"I thought, crap, how am I not going to help?" she recalls. "And they said, 'Well how long will that take? A couple of weeks? A month?'"
Dr. Croney with Theo, whom she calls "a beloved family member of our research team."
(Photo credit: Purdue University/Vincent Walter)
Six years later, Croney's research remains ongoing. It has become the first of its kind in the world—and it's challenging our understanding of how dog breeding is being done, and how it could and should be done for years to come.
How We Got Here
Americans have been breeding pet dogs in large-scale kennels since World War II. The federal standard that regulates those kennels is the Animal Welfare Act, which President Johnson signed into law in 1966. Back then, people thought it was OK to treat dogs a lot differently than they do today. The law has been updated, but it still allows a dog the size of a Beagle to be kept in a cage the size of a dishwasher all day, every day because for some dogs, when the law was written, having a cage that size meant an improvement in living conditions.
Countless commercial breeders, who are regularly inspected under the Animal Welfare Act, have long believed that as long as they followed the law, they were doing things right. And they've seen sales for their puppies go up and up over the years. About 38 percent of U.S. households now own one or more dogs, the highest rate since the American Veterinary Medical Association began measuring the statistic in 1982.
Consumers now demand eight million dogs per year, which has reinforced breeders' beliefs that despite what activists shout at protests, the breeders are actually running businesses the public supports. As one Ohio commercial breeder—long decried by activists as a "puppy mill" owner—told The Washington Post in 2016, "This is a customer-driven industry. If we weren't satisfying the customer, we'd starve to death. I've never seen prices like the ones we're seeing now, in my whole career."
That breeder, though, is also among leading industry voices who say they understand that public perception of what's acceptable and what's not in a breeding kennel has changed. Regardless of what the laws are, they say, kennels must change along with the public's wishes if the commercial breeding industry is going to survive. The question is how, exactly, to move from the past to the future, at a time when demands for change have reached a fever pitch.
"The Animal Welfare Act, that was gospel. It meant you were taking care of dogs," says Bob Vetere, former head of the American Pet Products Association and now chairman of the Pet Leadership Council. "That was, what, 40 years ago? Things have evolved. People understand much more since then—and back then, there were maybe 20 million dogs in the country. Now, there's 90 million. It's that dramatic. People love their dogs, and everybody is going to get one."
Vetere became an early supporter of Croney's research, which, unbelievably, became the first ever to focus on what it actually means to run a good commercial breeding kennel. At the start of her research, Croney found that the scientific literature underpinning many existing laws and opinions was not just lacking, but outright nonexistent.
"We kept finding it over and over," she says of the literature gaps, citing common but uninformed beliefs about appropriate kennel size as just one example. "I can't find any research about how much space they're supposed to have. People said, 'Yeah, we had a meeting and a bunch of people made some recommendations.'"
She started filling in the research gaps with her team at Purdue, building relationships with dog breeders until she had more than 100 kennels letting her methodically figure out what was actually working for the dogs.
"The measurable successes in animal welfare over the past 50 years began from a foundation in science."
Creating Standards from Scratch
Other industry players soon took notice. One was Ed Sayres, who had served as CEO of the ASPCA for nearly a decade before turning his attention to lobbying efforts regarding the "puppy mill" issue. He recognized that what Croney was doing for commercial breeding mirrored the early work researchers started a half-century ago in the effort that led to better shelters all across America today.
"The measurable successes in animal welfare over the past 50 years began from a foundation in science," Sayres says. "Whether it was the transition to more humane euthanasia methods or how to manage dog and cat overpopulation, we found success from rigorous examination of facts and emerging science."
Sayres, Vetere, and others began pushing for the industry to support Croney's work, moving the goalposts beyond Indiana to the entire United States.
"If you don't have commercial breeding, you have people importing dogs from overseas with no restrictions, or farming in their backyards to make money," Vetere says. "You need commercial breeders with standards—and that's what Candace is trying to create, those standards."
Croney ended up with a $900,000 grant from three industry organizations: the World Pet Association, Pet Food Institute, and the Pet Industry Joint Advisory Council. With their support, she created a nationwide program called Canine Care Certified, like a Good Housekeeping Seal of Approval for a kennel. The program focuses on outcome-based standards, meaning she looks at what the dogs tell her about how well they are doing through their health and behavior. For the most part, beyond baseline requirements, the program lets a breeder achieve those goals in whatever ways work for the dogs.
The approach is different from many legislative efforts, with laws stating a cage must be made three feet larger to be considered humane. Instead, Croney walks through kennels with breeders and points out, for instance, which puppies in a litter seem to be shy or fearful, and then teaches the breeders how to give those puppies better socialization. She helps the breeders find ways to introduce dogs to strangers and objects like umbrellas that may not be part of regular kennel life, but will need to become familiar when the breeding dog retires and gets adopted into a home as a pet. She helps breeders understand that dogs need mental as well as physical stimulation, whether it comes from playing with balls and toys or running up and down slides.
The breeders can't learn fast enough, Croney says, and she remains stunned at how they constantly ask for more information—an attitude that made her stop using the term "puppy mill" to describe them at all.
"Now, full disclosure: Given that all of these kennels had volunteered, the odds were that we were seeing a skewed population, and that it skewed positive," she says. "But if you read what was in the media at the time, we shouldn't have been able to find any. We're told that all these kennels are terrible. Clearly, it was possible to get a positive outcome."
To Buy or Not to Buy?
Today, she says, she's shocked at how quickly some of the kennels have improved. Facilities that appalled her at first sight now have dogs greeting people with wagging tails.
"Not only would I get a dog from them, but would I put my dog there in that kennel temporarily? Yeah, I would."
"The most horrifying thing I learned was that some of these people weren't doing what I'd like to see, not because they didn't care or only wanted money, but because nobody had ever told them," she says. "As it turned out, they didn't know any different, and no one would help them."
For Americans who want to know whether it's OK to get a commercially bred puppy, Croney says she thinks about her own dogs. When she started working with the breeders, there were plenty of kennels that, she says, she would not have wanted to patronize. But now she's changing her mind about more and more of them.
"I'm just speaking as somebody who loves dogs and wants to make sure I'm not subsidizing anything inhumane or cruel," she says. "Not only would I get a dog from them, but would I put my dog there in that kennel temporarily? Yeah, I would."
She says the most important thing is for consumers to find out how a pup was raised, and how the pup's parents were raised. As with most industries, commercial breeders run the gamut, from barely legal to above and beyond.
Not everyone agrees with Croney's take on the situation, or with her approach to improving commercial breeding kennels. In its publication "Puppy Mills and the Animal Welfare Act," the Humane Society of the United States writes that while Croney's Canine Care Certified program supports "common areas of agreement" with animal-welfare lobbyists, her work has been funded by the pet industry—suggesting that it's impure—and a voluntary program is not enough to incentivize breeders to improve.
New laws, the Humane Society states, must be enacted to impose change: "Many commercial dog breeding operators will not raise their standards voluntarily, and even if they were to agree to do so it is not clear whether there would be any independent mechanism for enforcement or transparency for the public's sake. ... The logical conclusion is that improved standards must be codified."
Croney says that type of attitude has long created resentment between breeders and animal-welfare activists, as opposed to actual kennel improvements. Both sides have a point; for years, there have been examples of bottom-of-the-barrel kennels that changed their ways or shut down only after regulators smacked them with violations, or after lawmakers raised operating standards in ways that required improvements for the kennels to remain legally in business.
At the same time, though, powerful organizations including the Humane Society—which had revenue of more than $165 million in 2018 alone—have routinely pushed for bans on stores that sell commercially bred puppies, and have decried "puppy mills" in marketing and fund-raising literature, without offering financial grants or educational programs to kennels that are willing to improve.
Croney believes that the reflexive demonization of all commercial breeders is a mistake. Change is more effective, she says, when breeders "want to do better, want to learn, want to grow, and you treat them as advocates and allies in doing something good for animal welfare, as opposed to treating them like they're your enemies."
"If you're watching undercover videos about people treating animals in bad ways, I'm telling you, change is happening."
She adds that anyone who says all commercial breeders are "puppy mills" needs to take a look at the kennels she's seen and the changes her work has brought—and is continuing to bring.
"The ones we work with are working really, really hard to improve and open their doors so that if somebody wants to get a dog from them, they can be assured that those dogs were treated with a level of care and compassion that wasn't there five or 10 years ago, but that is there now and will be better in a year and will be much better in five years," she says. "If you're watching undercover videos about people treating animals in bad ways, I'm telling you, change is happening. It is so much better than people realize, and it continues to get even better yet."
In the 1966 movie "Fantastic Voyage," actress Raquel Welch and her submarine were shrunk to the size of a cell in order to eliminate a blood clot in a scientist's brain. Now, 55 years later, the scenario is becoming closer to reality.
California-based startup Bionaut Labs has developed a nanobot about the size of a grain of rice that's designed to transport medication to the exact location in the body where it's needed. If you think about it, the conventional way to deliver medicine makes little sense: A painkiller affects the entire body instead of just the arm that's hurting, and chemotherapy is flushed through all the veins instead of precisely targeting the tumor.
"Chemotherapy is delivered systemically," Bionaut-founder and CEO Michael Shpigelmacher says. "Often only a small percentage arrives at the location where it is actually needed."
But what if it was possible to send a tiny robot through the body to attack a tumor or deliver a drug at exactly the right location?
Several startups and academic institutes worldwide are working to develop such a solution but Bionaut Labs seems the furthest along in advancing its invention. "You can think of the Bionaut as a tiny screw that moves through the veins as if steered by an invisible screwdriver until it arrives at the tumor," Shpigelmacher explains. Via Zoom, he shares the screen of an X-ray machine in his Culver City lab to demonstrate how the half-transparent, yellowish device winds its way along the spine in the body. The nanobot contains a tiny but powerful magnet. The "invisible screwdriver" is an external magnetic field that rotates that magnet inside the device and gets it to move and change directions.
The current model has a diameter of less than a millimeter. Shpigelmacher's engineers could build the miniature vehicle even smaller but the current size has the advantage of being big enough to see with bare eyes. It can also deliver more medicine than a tinier version. In the Zoom demonstration, the micorobot is injected into the spine, not unlike an epidural, and pulled along the spine through an outside magnet until the Bionaut reaches the brainstem. Depending which organ it needs to reach, it could be inserted elsewhere, for instance through a catheter.
"The hope is that we can develop a vehicle to transport medication deep into the body," says Max Planck scientist Tian Qiu.
Imagine moving a screw through a steak with a magnet — that's essentially how the device works. But of course, the Bionaut is considerably different from an ordinary screw: "At the right location, we give a magnetic signal, and it unloads its medicine package," Shpigelmacher says.
To start, Bionaut Labs wants to use its device to treat Parkinson's disease and brain stem gliomas, a type of cancer that largely affects children and teenagers. About 300 to 400 young people a year are diagnosed with this type of tumor. Radiation and brain surgery risk damaging sensitive brain tissue, and chemotherapy often doesn't work. Most children with these tumors live less than 18 months. A nanobot delivering targeted chemotherapy could be a gamechanger. "These patients really don't have any other hope," Shpigelmacher says.
Of course, the main challenge of the developing such a device is guaranteeing that it's safe. Because tissue is so sensitive, any mistake could risk disastrous results. In recent years, Bionaut has tested its technology in dozens of healthy sheep and pigs with no major adverse effects. Sheep make a good stand-in for humans because their brains and spines are similar to ours.
The Bionaut device is about the size of a grain of rice.
Bionaut Labs
"As the Bionaut moves through brain tissue, it creates a transient track that heals within a few weeks," Shpigelmacher says. The company is hoping to be the first to test a nanobot in humans. In December 2022, it announced that a recent round of funding drew $43.2 million, for a total of 63.2 million, enabling more research and, if all goes smoothly, human clinical trials by early next year.
Once the technique has been perfected, further applications could include addressing other kinds of brain disorders that are considered incurable now, such as Alzheimer's or Huntington's disease. "Microrobots could serve as a bridgehead, opening the gateway to the brain and facilitating precise access of deep brain structure – either to deliver medication, take cell samples or stimulate specific brain regions," Shpigelmacher says.
Robot-assisted hybrid surgery with artificial intelligence is already used in state-of-the-art surgery centers, and many medical experts believe that nanorobotics will be the instrument of the future. In 2016, three scientists were awarded the Nobel Prize in Chemistry for their development of "the world's smallest machines," nano "elevators" and minuscule motors. Since then, the scientific experiments have progressed to the point where applicable devices are moving closer to actually being implemented.
Bionaut's technology was initially developed by a research team lead by Peer Fischer, head of the independent Micro Nano and Molecular Systems Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, Germany. Fischer is considered a pioneer in the research of nano systems, which he began at Harvard University more than a decade ago. He and his team are advising Bionaut Labs and have licensed their technology to the company.
"The hope is that we can develop a vehicle to transport medication deep into the body," says Max Planck scientist Tian Qiu, who leads the cooperation with Bionaut Labs. He agrees with Shpigelmacher that the Bionaut's size is perfect for transporting medication loads and is researching potential applications for even smaller nanorobots, especially in the eye, where the tissue is extremely sensitive. "Nanorobots can sneak through very fine tissue without causing damage."
In "Fantastic Voyage," Raquel Welch's adventures inside the body of a dissident scientist let her swim through his veins into his brain, but her shrunken miniature submarine is attacked by antibodies; she has to flee through the nerves into the scientist's eye where she escapes into freedom on a tear drop. In reality, the exit in the lab is much more mundane. The Bionaut simply leaves the body through the same port where it entered. But apart from the dramatization, the "Fantastic Voyage" was almost prophetic, or, as Shpigelmacher says, "Science fiction becomes science reality."
This article was first published by Leaps.org on April 12, 2021.
How the Human Brain Project Built a Mind of its Own
In 2009, neuroscientist Henry Markram gave an ambitious TED talk. “Our mission is to build a detailed, realistic computer model of the human brain,” he said, naming three reasons for this unmatched feat of engineering. One was because understanding the human brain was essential to get along in society. Another was because experimenting on animal brains could only get scientists so far in understanding the human ones. Third, medicines for mental disorders weren’t good enough. “There are two billion people on the planet that are affected by mental disorders, and the drugs that are used today are largely empirical,” Markram said. “I think that we can come up with very concrete solutions on how to treat disorders.”
Markram's arguments were very persuasive. In 2013, the European Commission launched the Human Brain Project, or HBP, as part of its Future and Emerging Technologies program. Viewed as Europe’s chance to try to win the “brain race” between the U.S., China, Japan, and other countries, the project received about a billion euros in funding with the goal to simulate the entire human brain on a supercomputer, or in silico, by 2023.
Now, after 10 years of dedicated neuroscience research, the HBP is coming to an end. As its many critics warned, it did not manage to build an entire human brain in silico. Instead, it achieved a multifaceted array of different goals, some of them unexpected.
Scholars have found that the project did help advance neuroscience more than some detractors initially expected, specifically in the area of brain simulations and virtual models. Using an interdisciplinary approach of combining technology, such as AI and digital simulations, with neuroscience, the HBP worked to gain a deeper understanding of the human brain’s complicated structure and functions, which in some cases led to novel treatments for brain disorders. Lastly, through online platforms, the HBP spearheaded a previously unmatched level of global neuroscience collaborations.
Simulating a human brain stirs up controversy
Right from the start, the project was plagued with controversy and condemnation. One of its prominent critics was Yves Fregnac, a professor in cognitive science at the Polytechnic Institute of Paris and research director at the French National Centre for Scientific Research. Fregnac argued in numerous articles that the HBP was overfunded based on proposals with unrealistic goals. “This new way of over-selling scientific targets, deeply aligned with what modern society expects from mega-sciences in the broad sense (big investment, big return), has been observed on several occasions in different scientific sub-fields,” he wrote in one of his articles, “before invading the field of brain sciences and neuromarketing.”
"A human brain model can simulate an experiment a million times for many different conditions, but the actual human experiment can be performed only once or a few times," said Viktor Jirsa, a professor at Aix-Marseille University.
Responding to such critiques, the HBP worked to restructure the effort in its early days with new leadership, organization, and goals that were more flexible and attainable. “The HBP got a more versatile, pluralistic approach,” said Viktor Jirsa, a professor at Aix-Marseille University and one of the HBP lead scientists. He believes that these changes fixed at least some of HBP’s issues. “The project has been on a very productive and scientifically fruitful course since then.”
After restructuring, the HBP became a European hub on brain research, with hundreds of scientists joining its growing network. The HBP created projects focused on various brain topics, from consciousness to neurodegenerative diseases. HBP scientists worked on complex subjects, such as mapping out the brain, combining neuroscience and robotics, and experimenting with neuromorphic computing, a computational technique inspired by the human brain structure and function—to name just a few.
Simulations advance knowledge and treatment options
In 2013, it seemed that bringing neuroscience into a digital age would be farfetched, but research within the HBP has made this achievable. The virtual maps and simulations various HBP teams create through brain imaging data make it easier for neuroscientists to understand brain developments and functions. The teams publish these models on the HBP’s EBRAINS online platform—one of the first to offer access to such data to neuroscientists worldwide via an open-source online site. “This digital infrastructure is backed by high-performance computers, with large datasets and various computational tools,” said Lucy Xiaolu Wang, an assistant professor in the Resource Economics Department at the University of Massachusetts Amherst, who studies the economics of the HBP. That means it can be used in place of many different types of human experimentation.
Jirsa’s team is one of many within the project that works on virtual brain models and brain simulations. Compiling patient data, Jirsa and his team can create digital simulations of different brain activities—and repeat these experiments many times, which isn’t often possible in surgeries on real brains. “A human brain model can simulate an experiment a million times for many different conditions,” Jirsa explained, “but the actual human experiment can be performed only once or a few times.” Using simulations also saves scientists and doctors time and money when looking at ways to diagnose and treat patients with brain disorders.
Compiling patient data, scientists can create digital simulations of different brain activities—and repeat these experiments many times.
The Human Brain Project
Simulations can help scientists get a full picture that otherwise is unattainable. “Another benefit is data completion,” added Jirsa, “in which incomplete data can be complemented by the model. In clinical settings, we can often measure only certain brain areas, but when linked to the brain model, we can enlarge the range of accessible brain regions and make better diagnostic predictions.”
With time, Jirsa’s team was able to move into patient-specific simulations. “We advanced from generic brain models to the ability to use a specific patient’s brain data, from measurements like MRI and others, to create individualized predictive models and simulations,” Jirsa explained. He and his team are working on this personalization technique to treat patients with epilepsy. According to the World Health Organization, about 50 million people worldwide suffer from epilepsy, a disorder that causes recurring seizures. While some epilepsy causes are known others remain an enigma, and many are hard to treat. For some patients whose epilepsy doesn’t respond to medications, removing part of the brain where seizures occur may be the only option. Understanding where in the patients’ brains seizures arise can give scientists a better idea of how to treat them and whether to use surgery versus medications.
“We apply such personalized models…to precisely identify where in a patient’s brain seizures emerge,” Jirsa explained. “This guides individual surgery decisions for patients for which surgery is the only treatment option.” He credits the HBP for the opportunity to develop this novel approach. “The personalization of our epilepsy models was only made possible by the Human Brain Project, in which all the necessary tools have been developed. Without the HBP, the technology would not be in clinical trials today.”
Personalized simulations can significantly advance treatments, predict the outcome of specific medical procedures and optimize them before actually treating patients. Jirsa is watching this happen firsthand in his ongoing research. “Our technology for creating personalized brain models is now used in a large clinical trial for epilepsy, funded by the French state, where we collaborate with clinicians in hospitals,” he explained. “We have also founded a spinoff company called VB Tech (Virtual Brain Technologies) to commercialize our personalized brain model technology and make it available to all patients.”
The Human Brain Project created a level of interconnectedness within the neuroscience research community that never existed before—a network not unlike the brain’s own.
Other experts believe it’s too soon to tell whether brain simulations could change epilepsy treatments. “The life cycle of developing treatments applicable to patients often runs over a decade,” Wang stated. “It is still too early to draw a clear link between HBP’s various project areas with patient care.” However, she admits that some studies built on the HBP-collected knowledge are already showing promise. “Researchers have used neuroscientific atlases and computational tools to develop activity-specific stimulation programs that enabled paraplegic patients to move again in a small-size clinical trial,” Wang said. Another intriguing study looked at simulations of Alzheimer’s in the brain to understand how it evolves over time.
Some challenges remain hard to overcome even with computer simulations. “The major challenge has always been the parameter explosion, which means that many different model parameters can lead to the same result,” Jirsa explained. An example of this parameter explosion could be two different types of neurodegenerative conditions, such as Parkinson’s and Huntington’s diseases. Both afflict the same area of the brain, the basal ganglia, which can affect movement, but are caused by two different underlying mechanisms. “We face the same situation in the living brain, in which a large range of diverse mechanisms can produce the same behavior,” Jirsa said. The simulations still have to overcome the same challenge.
Understanding where in the patients’ brains seizures arise can give scientists a better idea of how to treat them and whether to use surgery versus medications.
The Human Brain Project
A network not unlike the brain’s own
Though the HBP will be closing this year, its legacy continues in various studies, spin-off companies, and its online platform, EBRAINS. “The HBP is one of the earliest brain initiatives in the world, and the 10-year long-term goal has united many researchers to collaborate on brain sciences with advanced computational tools,” Wang said. “Beyond the many research articles and projects collaborated on during the HBP, the online neuroscience research infrastructure EBRAINS will be left as a legacy even after the project ends.”
Those who worked within the HBP see the end of this project as the next step in neuroscience research. “Neuroscience has come closer to very meaningful applications through the systematic link with new digital technologies and collaborative work,” Jirsa stated. “In that way, the project really had a pioneering role.” It also created a level of interconnectedness within the neuroscience research community that never existed before—a network not unlike the brain’s own. “Interconnectedness is an important advance and prerequisite for progress,” Jirsa said. “The neuroscience community has in the past been rather fragmented and this has dramatically changed in recent years thanks to the Human Brain Project.”
According to its website, by 2023 HBP’s network counted over 500 scientists from over 123 institutions and 16 different countries, creating one of the largest multi-national research groups in the world. Even though the project hasn’t produced the in-silico brain as Markram envisioned it, the HBP created a communal mind with immense potential. “It has challenged us to think beyond the boundaries of our own laboratories,” Jirsa said, “and enabled us to go much further together than we could have ever conceived going by ourselves.”