Should Organ Donors Be Paid?
Deanna Santana had assumed that people on organ transplant lists received matches. She didn't know some died while waiting. But in May 2011, after her 17-year-old son, Scott, was killed in a car accident, she learned what a precious gift organ and tissue donation can be.
"I would estimate it cost our family about $4,000 for me to donate a kidney to a stranger."
His heart, lungs, kidneys, liver and pancreas saved five people. His corneas enabled two others to see. And his bones, connective tissues and veins helped 73 individuals.
The donation's impact had a profound effect on his mother as well. In September 2016, she agreed to donate a kidney in a paired exchange of four people making the same sacrifice for four compatible strangers.
She gave up two weeks' worth of paid vacation to recuperate and covered lodging costs for loved ones during her transplant. Eventually, she qualified for state disability for part of her leave, but the compensation was less than her salary as public education and relations manager at Sierra Donor Services, an organ procurement organization in West Sacramento, California.
"I would estimate it cost our family about $4,000 for me to donate a kidney to a stranger," says Santana, 51. Despite the monetary hardship, she "would do it again in a heartbeat."
While some contend it's exploitative to entice organ donors and their families with compensation, others maintain they should be rewarded for extending their generosity while risking complications and recovering from donation surgery. But many agree on one point: The focus should be less on paying donors and more on removing financial barriers that may discourage interested prospects from doing a good deed.
"There's significant potential risk associated with donating a kidney, some of which we're continuing to learn," says transplant surgeon Matthew Cooper, a board member of the National Kidney Foundation and co-chair of its Transplant Task Force.
Although most kidneys are removed laparoscopically, reducing hospitalization and recuperation time, complications can occur. The risks include wound and urinary tract infections, pneumonia, blood clots, injury to local nerves causing decreased sensation in the hip or thigh, acute blood loss requiring transfusion and even death, Cooper says.
"We think that donation is a cost-neutral opportunity. It, in fact, is not."
Meanwhile, from a financial standpoint, estimates have found it costs a kidney donor in the United States an average of $3,000 to navigate the entire transplant process, which may include time off from work, travel to and from the hospital, accommodations, food and child care expenses.
"We think that donation is a cost-neutral opportunity. It, in fact, is not," says Cooper, who is also Director of Kidney and Pancreas Transplantation at MedStar Georgetown Transplant Institute in Washington, D.C.
The National Organ Transplant Act of 1984 makes it illegal to sell human organs but did not prohibit payment for the donation of human plasma, sperm and egg cells.
Unlike plasma, sperm and eggs cells—which are "renewable resources"—a kidney is irreplaceable, says John J. Friedewald, a nephrologist who is medical director of kidney transplantation at Northwestern Memorial Hospital in Chicago.
Offering some sort of incentives could lessen the overall burden on donors while benefiting many more potential recipients. "We can eliminate the people waiting on the list and dying, at least for kidneys," Friedewald says.
On the other hand, incentives may influence an individual to the point that the donation is made purely for monetary gain. "It's a delicate balance," he explains, "because so much of the transplant system has been built on altruism."
That's where doing away with the "disincentives" comes into the equation. Compensating donors for the costs they endure would be a reasonable compromise, Friedewald says.
Depending on the state, living donors may deduct up to $10,000 from their adjusted gross income under the Organ Donation Tax Deduction Act for the year in which the transplantation occurs. "Human organ" applies to all or part of a liver, pancreas, kidney, intestine, lung or bone marrow. The subtracted modification may be claimed for only unreimbursed travel and lodging expenses and lost wages.
For some or many donors, the tax credit doesn't go far enough in offsetting their losses, but they often take it in stride, says Chaya Lipschutz, a Brooklyn, N.Y.-based matchmaker for donors and recipients, who launched the website KidneyMitzvah.com in 2009.
Seeking compensation for lost wages "is extremely rare" in her experience. "In all the years of doing this," she recalls, "I only had two people who donated a kidney who needed to get paid for lost wages." She finds it "pretty amazing that mostly all who contact don't ask."
Lipschutz, an Orthodox Jew, has walked in a donor's shoes. In September 2005, at age 48, she donated a kidney to a stranger after coming across an ad in a weekly Jewish newspaper. The ad stated: "Please help save a Jewish life—New Jersey mother of two in dire need of kidney—Whoever saves one life from Israel it is as if they saved an entire nation."
To make matches, Lipschutz posts in various online groups in the United States and Israel. Donors in Israel may receive "refunds" for loss of earnings, travel expenses, psychological treatment, recovery leave, and insurance. They also qualify for visits to national parks and nature reserves without entrance fees, Lipschutz says.
"There has been an attempt to figure out what would constitute fair compensation without the appearance that people are selling their organs or their loved ones' organs."
Kidneys can be procured from healthy living donors or patients who have undergone circulatory or brain death.
"The real dilemma arises with payment for living donation, which would favor poorer individuals to donate who would not necessarily do so," says Dr. Cheryl L. Kunis, a New York-based nephrologist whose practice consists primarily of kidney transplant recipients. "In addition, such payment for living donation has not demonstrated to improve a donor's socioeconomic status globally."
Living kidney donation has the highest success rate. But organs from young and previously healthy individuals who die in accidents or from overdoses, especially in the opioid epidemic, often work just as well as kidneys from cadaveric donors who succumb to trauma, Kunis says.
In these tragic circumstances, she notes that the decision to donate is often left to an individual's grieving family members when a living will isn't available. A payment toward funeral expenses, for instance, could tip their decision in favor of organ donation.
A similar scenario presents when a patient with a beating heart is on the verge of dying, and the family is unsure about consenting to organ donation, says Jonathan D. Moreno, a professor in the department of medical ethics and health policy at the University of Pennsylvania.
"There has been an attempt to figure out what would constitute fair compensation," he says, "without the appearance that people are selling their organs or their loved ones' organs."
The overarching concern remains the same: Compensating organ donors could lead to exploitation of socioeconomically disadvantaged groups. "What's likely to finally resolve" this bioethics debate, Moreno foresees, "is patient-compatible organs grown in pigs as the basic science of xenotransplants (between species) seems to be progressing."
Cooper, the transplant surgeon at Georgetown, believes more potential donors would come forward if financial barriers weren't an issue. Of the ones who end up giving a part of themselves, with or without reimbursement, "the overwhelming majority look back upon it as an extremely positive experience," he says. After all, "they're lifesavers. They should be celebrated."
A new type of cancer therapy is shrinking deadly brain tumors with just one treatment
Few cancers are deadlier than glioblastomas—aggressive and lethal tumors that originate in the brain or spinal cord. Five years after diagnosis, less than five percent of glioblastoma patients are still alive—and more often, glioblastoma patients live just 14 months on average after receiving a diagnosis.
But an ongoing clinical trial at Mass General Cancer Center is giving new hope to glioblastoma patients and their families. The trial, called INCIPIENT, is meant to evaluate the effects of a special type of immune cell, called CAR-T cells, on patients with recurrent glioblastoma.
How CAR-T cell therapy works
CAR-T cell therapy is a type of cancer treatment called immunotherapy, where doctors modify a patient’s own immune system specifically to find and destroy cancer cells. In CAR-T cell therapy, doctors extract the patient’s T-cells, which are immune system cells that help fight off disease—particularly cancer. These T-cells are harvested from the patient and then genetically modified in a lab to produce proteins on their surface called chimeric antigen receptors (thus becoming CAR-T cells), which makes them able to bind to a specific protein on the patient’s cancer cells. Once modified, these CAR-T cells are grown in the lab for several weeks so that they can multiply into an army of millions. When enough cells have been grown, these super-charged T-cells are infused back into the patient where they can then seek out cancer cells, bind to them, and destroy them. CAR-T cell therapies have been approved by the US Food and Drug Administration (FDA) to treat certain types of lymphomas and leukemias, as well as multiple myeloma, but haven’t been approved to treat glioblastomas—yet.
CAR-T cell therapies don’t always work against solid tumors, such as glioblastomas. Because solid tumors contain different kinds of cancer cells, some cells can evade the immune system’s detection even after CAR-T cell therapy, according to a press release from Massachusetts General Hospital. For the INCIPIENT trial, researchers modified the CAR-T cells even further in hopes of making them more effective against solid tumors. These second-generation CAR-T cells (called CARv3-TEAM-E T cells) contain special antibodies that attack EFGR, a protein expressed in the majority of glioblastoma tumors. Unlike other CAR-T cell therapies, these particular CAR-T cells were designed to be directly injected into the patient’s brain.
The INCIPIENT trial results
The INCIPIENT trial involved three patients who were enrolled in the study between March and July 2023. All three patients—a 72-year-old man, a 74-year-old man, and a 57-year-old woman—were treated with chemo and radiation and enrolled in the trial with CAR-T cells after their glioblastoma tumors came back.
The results, which were published earlier this year in the New England Journal of Medicine (NEJM), were called “rapid” and “dramatic” by doctors involved in the trial. After just a single infusion of the CAR-T cells, each patient experienced a significant reduction in their tumor sizes. Just two days after receiving the infusion, the glioblastoma tumor of the 72-year-old man decreased by nearly twenty percent. Just two months later the tumor had shrunk by an astonishing 60 percent, and the change was maintained for more than six months. The most dramatic result was in the 57-year-old female patient, whose tumor shrank nearly completely after just one infusion of the CAR-T cells.
The results of the INCIPIENT trial were unexpected and astonishing—but unfortunately, they were also temporary. For all three patients, the tumors eventually began to grow back regardless of the CAR-T cell infusions. According to the press release from MGH, the medical team is now considering treating each patient with multiple infusions or prefacing each treatment with chemotherapy to prolong the response.
While there is still “more to do,” says co-author of the study neuro-oncologist Dr. Elizabeth Gerstner, the results are still promising. If nothing else, these second-generation CAR-T cell infusions may someday be able to give patients more time than traditional treatments would allow.
“These results are exciting but they are also just the beginning,” says Dr. Marcela Maus, a doctor and professor of medicine at Mass General who was involved in the clinical trial. “They tell us that we are on the right track in pursuing a therapy that has the potential to change the outlook for this intractable disease.”
Since the early 2000s, AI systems have eliminated more than 1.7 million jobs, and that number will only increase as AI improves. Some research estimates that by 2025, AI will eliminate more than 85 million jobs.
But for all the talk about job security, AI is also proving to be a powerful tool in healthcare—specifically, cancer detection. One recently published study has shown that, remarkably, artificial intelligence was able to detect 20 percent more cancers in imaging scans than radiologists alone.
Published in The Lancet Oncology, the study analyzed the scans of 80,000 Swedish women with a moderate hereditary risk of breast cancer who had undergone a mammogram between April 2021 and July 2022. Half of these scans were read by AI and then a radiologist to double-check the findings. The second group of scans was read by two researchers without the help of AI. (Currently, the standard of care across Europe is to have two radiologists analyze a scan before diagnosing a patient with breast cancer.)
The study showed that the AI group detected cancer in 6 out of every 1,000 scans, while the radiologists detected cancer in 5 per 1,000 scans. In other words, AI found 20 percent more cancers than the highly-trained radiologists.
Scientists have been using MRI images (like the ones pictured here) to train artificial intelligence to detect cancers earlier and with more accuracy. Here, MIT's AI system, MIRAI, looks for patterns in a patient's mammograms to detect breast cancer earlier than ever before. news.mit.edu
But even though the AI was better able to pinpoint cancer on an image, it doesn’t mean radiologists will soon be out of a job. Dr. Laura Heacock, a breast radiologist at NYU, said in an interview with CNN that radiologists do much more than simply screening mammograms, and that even well-trained technology can make errors. “These tools work best when paired with highly-trained radiologists who make the final call on your mammogram. Think of it as a tool like a stethoscope for a cardiologist.”
AI is still an emerging technology, but more and more doctors are using them to detect different cancers. For example, researchers at MIT have developed a program called MIRAI, which looks at patterns in patient mammograms across a series of scans and uses an algorithm to model a patient's risk of developing breast cancer over time. The program was "trained" with more than 200,000 breast imaging scans from Massachusetts General Hospital and has been tested on over 100,000 women in different hospitals across the world. According to MIT, MIRAI "has been shown to be more accurate in predicting the risk for developing breast cancer in the short term (over a 3-year period) compared to traditional tools." It has also been able to detect breast cancer up to five years before a patient receives a diagnosis.
The challenges for cancer-detecting AI tools now is not just accuracy. AI tools are also being challenged to perform consistently well across different ages, races, and breast density profiles, particularly given the increased risks that different women face. For example, Black women are 42 percent more likely than white women to die from breast cancer, despite having nearly the same rates of breast cancer as white women. Recently, an FDA-approved AI device for screening breast cancer has come under fire for wrongly detecting cancer in Black patients significantly more often than white patients.
As AI technology improves, radiologists will be able to accurately scan a more diverse set of patients at a larger volume than ever before, potentially saving more lives than ever.