Stem Cell Therapy for COVID-19 Is Gaining Steam in China, But Some Skeptical Scientists Urge Caution
Over the past two months, China's frantic search for an effective COVID-19 treatment has seen doctors trying everything from influenza drugs to traditional herbal remedies and even acupuncture, in a bid to help patients suffering from coronavirus-induced pneumonia.
"This treatment is particularly aimed at older patients who are seriously ill. These kinds of patients are in the danger zone."
Since mid February, one approach that has gained increasing traction is stem cell therapies, treatments that have often been viewed as a potential panacea by desperate patients suffering from degenerative incurable conditions ranging from Parkinson's to ALS. In many of these diseases, reality has yet to match the hype.
In COVID-19, there are hopes it might, though some experts are warning not to count on it. At Beijing's YouAn Hospital, doctors have been treating patients at various stages of the illness with intravenous infusions of so-called mesenchymal stem cells taken from umbilical cord tissue, as part of an ongoing clinical trial since January 21. The outcomes of the initial seven patients – published last month – appeared promising and the trial has since been expanded to 31 patients according to Dr. Kunlin Jin, a researcher at University of North Texas Health Science Center who is collaborating with the doctors in Beijing.
"Sixteen of these patients had mild symptoms, eight are severe, and seven are critically severe," Jin told leapsmag. "But all patients have shown improvements in lung function following the treatment, based on CT scans -- most of them in the first three days and seven have now been completely discharged from hospital. This treatment is particularly aimed at older patients who are seriously ill. These kinds of patients are in the danger zone; it's essential that they receive treatment, but right now we have nothing for most of them. No drugs or anything."
The apparent success of the very small Beijing trial has since led to a nationwide initiative to fast-track stem cell therapies for COVID-19. Across China, there are currently 36 clinical trials intending to use mesenchymal stem cells to treat COVID-19 patients that are either in the planning or recruiting phases. The Chinese Medical Association has now issued guidelines to standardize stem cell treatment for COVID-19, while Zhang Xinmin, an official in China's Ministry of Science and Technology, revealed in a press conference last week that a stem cell-based drug has been approved for clinical trials.
The thinking behind why stem cells could be a fast-acting and effective treatment is due to the nature of COVID-19. The thousands of fatalities worldwide are not from the virus directly, but from a dysfunctional immune response to the infection. Patients die because their respiratory systems become overwhelmed by a storm of inflammatory molecules called cytokines, causing lung damage and failure. However, studies in mice have long shown that stem cells have anti-inflammatory properties with the ability to switch off such cytokine storms, reducing such virus-induced lung injuries.
"There has been an enormous amount of hype about these cells, and there is scant scientific evidence that they have any therapeutic effect in any situation. "
"The therapy can inhibit the overactivation of the immune system and promote repair by improving the pulmonary microenvironment and improve lung function," explained Wei Hou, one of the doctors conducting the trial at YouAn Hospital.
However not everyone is convinced, citing the small number of patients treated to date, and potential risks from such therapy. "We just don't know enough to believe that stem cells might be helpful with COVID-19," said Paul Knoepfler, professor of cell biology at UC Davis. "The new stem cell studies are too small and lack controls, making it impossible to come to any solid conclusions. The chance of benefit is low based on the little we know so far and there are going to be risks that are hard to pin down. For instance, what if a stem cell infusion impairs some kind of needed immune response?"
Other scientists are even more skeptical. "I am concerned about all treatments that use mesenchymal stem cells," warned Jeanne Loring, the Director of the Center for Regenerative Medicine at Scripps Research in La Jolla, Calif. "There has been an enormous amount of hype about these cells, and there is scant scientific evidence that they have any therapeutic effect in any situation. Typically, these treatments are offered to people who have diseases without cures. I'm certain that there will be evidence-based treatments for COVID19, but I understand that they are not yet available, people are desperate, and they will try anything. I hope the sick are not taken advantage of because of their desperation."
Despite such concerns, the steadily rising death toll from COVID-19 means other nations are preparing to proceed with their own clinical trials of mesenchymal stem cells. Jin said he has been contacted by researchers and clinicians around the world seeking information on how to conduct their own trials, with the University of Cambridge's Stem Cell Institute in the U.K. reportedly looking to initiate a trial.
The scale of the global emergency has seen governments repeatedly calling on the corporate world to invest in the search for a cure, and the Australian company Mesoblast – a global leader in cell-based therapies for a range of diseases – are expecting to receive the green light to initiate clinical trials of their own stem cell based product against COVID-19.
"We're talking to at least three major governments," said Silviu Itescu, CEO and Managing Director of Mesoblast. "We are working with groups in Australia, the U.S. and the U.K., and I expect there'll be trials starting imminently in all those jurisdictions."
Itescu is bullish that the therapy has a good chance of proving effective, as it recently successfully completed Phase III trials for severe steroid-refractory acute graft versus host disease (GVHD) – a condition which leads to a very similar disease profile to COVID-19.
"The exact same cytokine profile is occurring in the lungs of COVID-19 infected patients as in GVHD which is destructive to the local lung environment," he said. "If our cells are able to target that in GVHD, they ought to be able to switch off the cytokine response in COVID lung disease as well."
"What we should be focusing on now is not the possible boost to the stem cell field, but rather doing rigorous science to test whether stem cells can help COVID-19 patients."
Jin is hopeful that if the imminent trials yield successful results, the U.S. FDA could fast-track mesenchymal stem cells as an approved emergency therapy for COVID-19. However, Knoepfler cautions that there is a need for far more concrete and widespread proof of the benefit before regulatory bodies start ushering through the green light.
"What we should be focusing on now is not the possible boost to the stem cell field, but rather doing rigorous science to test whether stem cells can help COVID-19 patients," he said. "During a pandemic, it's reasonable to do some testing of unproven interventions like stem cells in small studies, but results from them should be discussed in a sober, conservative manner until there is more evidence."
Scientists experiment with burning iron as a fuel source
Story by Freethink
Try burning an iron metal ingot and you’ll have to wait a long time — but grind it into a powder and it will readily burst into flames. That’s how sparklers work: metal dust burning in a beautiful display of light and heat. But could we burn iron for more than fun? Could this simple material become a cheap, clean, carbon-free fuel?
In new experiments — conducted on rockets, in microgravity — Canadian and Dutch researchers are looking at ways of boosting the efficiency of burning iron, with a view to turning this abundant material — the fourth most common in the Earth’s crust, about about 5% of its mass — into an alternative energy source.
Iron as a fuel
Iron is abundantly available and cheap. More importantly, the byproduct of burning iron is rust (iron oxide), a solid material that is easy to collect and recycle. Neither burning iron nor converting its oxide back produces any carbon in the process.
Iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again.
Iron has a high energy density: it requires almost the same volume as gasoline to produce the same amount of energy. However, iron has poor specific energy: it’s a lot heavier than gas to produce the same amount of energy. (Think of picking up a jug of gasoline, and then imagine trying to pick up a similar sized chunk of iron.) Therefore, its weight is prohibitive for many applications. Burning iron to run a car isn’t very practical if the iron fuel weighs as much as the car itself.
In its powdered form, however, iron offers more promise as a high-density energy carrier or storage system. Iron-burning furnaces could provide direct heat for industry, home heating, or to generate electricity.
Plus, iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again (as long as you’ve got a source of clean electricity or green hydrogen). When there’s excess electricity available from renewables like solar and wind, for example, rust could be converted back into iron powder, and then burned on demand to release that energy again.
However, these methods of recycling rust are very energy intensive and inefficient, currently, so improvements to the efficiency of burning iron itself may be crucial to making such a circular system viable.
The science of discrete burning
Powdered particles have a high surface area to volume ratio, which means it is easier to ignite them. This is true for metals as well.
Under the right circumstances, powdered iron can burn in a manner known as discrete burning. In its most ideal form, the flame completely consumes one particle before the heat radiating from it combusts other particles in its vicinity. By studying this process, researchers can better understand and model how iron combusts, allowing them to design better iron-burning furnaces.
Discrete burning is difficult to achieve on Earth. Perfect discrete burning requires a specific particle density and oxygen concentration. When the particles are too close and compacted, the fire jumps to neighboring particles before fully consuming a particle, resulting in a more chaotic and less controlled burn.
Presently, the rate at which powdered iron particles burn or how they release heat in different conditions is poorly understood. This hinders the development of technologies to efficiently utilize iron as a large-scale fuel.
Burning metal in microgravity
In April, the European Space Agency (ESA) launched a suborbital “sounding” rocket, carrying three experimental setups. As the rocket traced its parabolic trajectory through the atmosphere, the experiments got a few minutes in free fall, simulating microgravity.
One of the experiments on this mission studied how iron powder burns in the absence of gravity.
In microgravity, particles float in a more uniformly distributed cloud. This allows researchers to model the flow of iron particles and how a flame propagates through a cloud of iron particles in different oxygen concentrations.
Existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
Insights into how flames propagate through iron powder under different conditions could help design much more efficient iron-burning furnaces.
Clean and carbon-free energy on Earth
Various businesses are looking at ways to incorporate iron fuels into their processes. In particular, it could serve as a cleaner way to supply industrial heat by burning iron to heat water.
For example, Dutch brewery Swinkels Family Brewers, in collaboration with the Eindhoven University of Technology, switched to iron fuel as the heat source to power its brewing process, accounting for 15 million glasses of beer annually. Dutch startup RIFT is running proof-of-concept iron fuel power plants in Helmond and Arnhem.
As researchers continue to improve the efficiency of burning iron, its applicability will extend to other use cases as well. But is the infrastructure in place for this transition?
Often, the transition to new energy sources is slowed by the need to create new infrastructure to utilize them. Fortunately, this isn’t the case with switching from fossil fuels to iron. Since the ideal temperature to burn iron is similar to that for hydrocarbons, existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.
How to Use Thoughts to Control Computers with Dr. Tom Oxley
Tom Oxley is building what he calls a “natural highway into the brain” that lets people use their minds to control their phones and computers. The device, called the Stentrode, could improve the lives of hundreds of thousands of people living with spinal cord paralysis, ALS and other neurodegenerative diseases.
Leaps.org talked with Dr. Oxley for today’s podcast. A fascinating thing about the Stentrode is that it works very differently from other “brain computer interfaces” you may be familiar with, like Elon Musk’s Neuralink. Some BCIs are implanted by surgeons directly into a person’s brain, but the Stentrode is much less invasive. Dr. Oxley’s company, Synchron, opts for a “natural” approach, using stents in blood vessels to access the brain. This offers some major advantages to the handful of people who’ve already started to use the Stentrode.
The audio improves about 10 minutes into the episode. (There was a minor headset issue early on, but everything is audible throughout.) Dr. Oxley’s work creates game-changing opportunities for patients desperate for new options. His take on where we're headed with BCIs is must listening for anyone who cares about the future of health and technology.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
In our conversation, Dr. Oxley talks about “Bluetooth brain”; the critical role of AI in the present and future of BCIs; how BCIs compare to voice command technology; regulatory frameworks for revolutionary technologies; specific people with paralysis who’ve been able to regain some independence thanks to the Stentrode; what it means to be a neurointerventionist; how to scale BCIs for more people to use them; the risks of BCIs malfunctioning; organic implants; and how BCIs help us understand the brain, among other topics.
Dr. Oxley received his PhD in neuro engineering from the University of Melbourne in Australia. He is the founding CEO of Synchron and an associate professor and the head of the vascular bionics laboratory at the University of Melbourne. He’s also a clinical instructor in the Deepartment of Neurosurgery at Mount Sinai Hospital. Dr. Oxley has completed more than 1,600 endovascular neurosurgical procedures on patients, including people with aneurysms and strokes, and has authored over 100 peer reviewed articles.
Links:
Synchron website - https://synchron.com/
Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients (paper co-authored by Tom Oxley) - https://jamanetwork.com/journals/jamaneurology/art...
More research related to Synchron's work - https://synchron.com/research
Tom Oxley on LinkedIn - https://www.linkedin.com/in/tomoxl
Tom Oxley on Twitter - https://twitter.com/tomoxl?lang=en
Tom Oxley TED - https://www.ted.com/talks/tom_oxley_a_brain_implant_that_turns_your_thoughts_into_text?language=en
Tom Oxley website - https://tomoxl.com/
Novel brain implant helps paralyzed woman speak using digital avatar - https://engineering.berkeley.edu/news/2023/08/novel-brain-implant-helps-paralyzed-woman-speak-using-a-digital-avatar/
Edward Chang lab - https://changlab.ucsf.edu/
BCIs convert brain activity into text at 62 words per minute - https://med.stanford.edu/neurosurgery/news/2023/he...
Leaps.org: The Mind-Blowing Promise of Neural Implants - https://leaps.org/the-mind-blowing-promise-of-neural-implants/
Tom Oxley