The Nation’s Science and Health Agencies Face a Credibility Crisis: Can Their Reputations Be Restored?
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
It didn't have to be this way. More than 200,000 Americans dead, seven million infected, with numbers continuing to climb, an economy in shambles with millions out of work, hundreds of thousands of small businesses crushed with most of the country still under lockdown. And all with no end in sight. This catastrophic result is due in large part to the willful disregard of scientific evidence and of muzzling policy experts by the Trump White House, which has spent its entire time in office attacking science.
One of the few weapons we had to combat the spread of Covid-19—wearing face masks—has been politicized by the President, who transformed this simple public health precaution into a first amendment issue to rally his base. Dedicated public health officials like Dr. Anthony Fauci, the highly respected director of the National Institute of Allergies and Infectious Diseases, have received death threats, which have prompted many of them around the country to resign.
Over the summer, the Trump White House pressured the Centers for Disease Control, which is normally in charge of fighting epidemics, to downplay COVID risks among young people and encourage schools to reopen. And in late September, the CDC was forced to pull federal teams who were going door-to-door doing testing surveys in Minnesota because of multiple incidents of threats and abuse. This list goes on and on.
Still, while the Trump administration's COVID failures are the most visible—and deadly—the nation's entire federal science infrastructure has been undermined in ways large and small.
The White House has steadily slashed monies for science—the 2021 budget cuts funding by 10–30% or more for crucial agencies like National Oceanic and Atmospheric Administration (NOAA) and the Environmental Protection Agency (EPA)—and has gutted health and science agencies across the board, including key agencies of the Department of Energy and the Interior, especially in divisions that deal with issues they oppose ideologically like climate change.
Even farmers can't get reliable information about how climate change affects planting seasons because the White House moved the entire staff at the U.S. Department of Agriculture agency who does this research, relocating them from Maryland to Kansas City, Missouri. Many of these scientists couldn't uproot their families and sell their homes, so the division has had to pretty much start over from scratch with a skeleton crew.
More than 1,600 federal scientists left government in the first two years of the Trump Administration, according to data compiled by the Washington Post, and one-fifth of top positions in science are vacant, depriving agencies of the expertise they need to fulfill their vital functions. Industry executives and lobbyists have been installed as gatekeepers—HHS Secretary Alex Azar was previously president of Eli Lilly, and three climate change deniers were appointed to key posts at the National Oceanic and Atmospheric Administration, to cite just a couple of examples. Trump-appointed officials have sidelined, bullied, or even vilified those who dare to speak out, which chills the rigorous debate that is the essential to sound, independent science.
"The CDC needs to be able to speak regularly to the American people to explain what it knows and how it knows it."
Linda Birnbaum knows firsthand what it's like to become a target. The microbiologist recently retired after more than a decade as the director of the National Institute of Environmental Health Sciences, which is the world's largest environmental health organization and the greatest funder of environmental health and toxicology research, a position that often put her agency at odds with the chemical and fossil fuel industry. There was an attempt to get her fired, she says, "because I had the nerve to write that science should be used in making policy. The chemical industry really went after me, and my last two years were not so much fun under this administration. I'd like to believe it was because I was making a difference—if I wasn't, they wouldn't care."
Little wonder that morale at federal agencies is low. "We're very frustrated," says Dr. William Schaffner, a veteran infectious disease specialist and a professor of medicine at the Vanderbilt University School of Medicine in Nashville. "My colleagues within these agencies, the CDC rank and file, are keeping their heads down doing the best they can, and they hope to weather this storm."
The cruel irony is that the United States was once a beacon of scientific innovation. In the heady post World War II years, while Europe lay in ruins, the successful development of penicillin and the atomic bomb—which Americans believed helped vanquish the Axis powers—unleashed a gusher of public money into research, launching an unprecedented era of achievement in American science. Scientists conquered polio, deciphered the genetic code, harnessed the power of the atom, invented lasers, transistors, microchips and computers, sent missions beyond Mars, and landed men on the moon. A once-inconsequential hygiene laboratory was transformed into the colossus the National Institutes of Health has become, which remains today the world's flagship medical research center, unrivaled in size and scope.
At the same time, a tiny public health agency headquartered in Atlanta, which had been in charge of eradicating the malaria outbreaks that plagued impoverished rural areas in the Deep South until the late 1940s, evolved into the Centers for Disease Control and Prevention. The CDC became the world's leader in fighting disease outbreaks, and the agency's crack team of epidemiologists—members of the vaunted Epidemic Intelligence Service—were routinely dispatched to battle global outbreaks of contagions such as Ebola and malaria and help lead the vaccination campaigns to eradicate killers like polio and small pox that have saved millions of lives.
What will it take to rebuild our federal science infrastructure and restore not only the public's confidence but the respect of the world's scientific community? There are some hopeful signs that there is pushback against the current national leadership, and non-profit watchdog groups like the Union of Concerned Scientists have mapped out comprehensive game plans to restore public trust and the integrity of science.
These include methods of protecting science from political manipulation; restoring the oversight role of independent federal advisory committees, whose numbers were decimated by recent executive orders; strengthening scientific agencies that have been starved by budget cuts and staff attrition; and supporting whistleblower protections and allowing scientists to do their jobs without political meddling to restore integrity to the process. And this isn't just a problem at the CDC. A survey of 1,600 EPA scientists revealed that more than half had been victims of political interference and were pressured to skew their findings, according to research released in April by the Union of Concerned Scientists.
"Federal agencies are staffed by dedicated professionals," says Andrew Rosenberg, director of the Center for Science and Democracy at the Union of Concerned Scientists and a former fisheries biologist for NOAA. "Their job is not to serve the president but the public interest. Inspector generals are continuing to do what they're supposed to, but their findings are not being adhered to. But they need to hold agencies accountable. If an agency has not met its mission or engaged in misconduct, there needs to be real consequences."
On other fronts, last month nine vaccine makers, including Sanofi, Pfizer, and AstraZeneca, took the unprecedented stop of announcing that their COVID-19 vaccines would be thoroughly vetted before they were released. In their implicit refusal to bow to political pressure from the White House to have a vaccine available before the election, their goal was to restore public confidence in vaccine safety, and ensure that enough Americans would consent to have the shot when it was eventually approved so that we'd reach the long-sought holy grail of herd immunity.
"That's why it's really important that all of the decisions need to be made with complete transparency and not taking shortcuts," says Dr. Tom Frieden, president and CEO of Resolve to Save Lives and former director of the CDC during the H1N1, Ebola, and Zika emergencies. "A vaccine is our most important tool, and we can't break that tool by meddling in the science approval process."
In late September, Senate Democrats introduced a new bill to halt political meddling in public health initiatives by the White House. Called Science and Transparency Over Politics Act (STOP), the legislation would create an independent task force to investigate political interference in the federal response to the coronavirus pandemic. "The Trump administration is still pushing the president's political priorities rather than following the science to defeat this virus," Senate Minority Leader Chuck Schumer said in a press release.
To effectively bring the pandemic under control and restore public confidence, the CDC must assume the leadership role in fighting COVID-19. During previous outbreaks, the top federal infectious disease specialists like Drs. Fauci and Frieden would have daily press briefings, and these need to resume. "The CDC needs to be able to speak regularly to the American people to explain what it knows and how it knows it," says Frieden, who cautions that a vaccine won't be a magic bullet. "There is no one thing that is going to make this virus go away. We need to continue to limit indoor exposures, wear masks, and do strategic testing, isolation, and quarantine. We need a comprehensive approach, and not just a vaccine."
We must also appoint competent and trustworthy leaders, says Rosenberg of the Union of Concerned Scientists. Top posts in too many science agencies are now filled by former industry executives and lobbyists with a built-in bias, as well as people lacking relevant scientific experience, many of whom were never properly vetted because of the current administration's penchant for bypassing Congress and appointing "acting" officials. "We've got great career people who have hung in, but in so much of the federal government, they just put in 'acting' people," says Linda Birnbaum. "They need to bring in better, qualified senior leadership."
Open positions need to be filled, too. Federal science agencies have been seriously crippled by staffing attrition, and the Trump Administration instituted a hiring freeze when it first came in. Staffing levels remain at least ten percent down from previous levels, says Birnbaum and in many agencies, like the EPA, "everything has come to a screeching halt, making it difficult to get anything done."
But in the meantime, the critical first step may be at the ballot box in November. Even Scientific American, the esteemed consumer science publication, for the first time in its 175-year history felt "compelled" to endorse a presidential candidate, Joe Biden, because of the enormity of the damage they say Donald Trump has inflicted on scientists, their legal protections, and on the federal science agencies.
"If the current administration continues, the national political leadership will be emboldened and will be even more assertive of their executive prerogatives and less concerned about traditional niceties, leading to further erosion of the activities of many federal agencies," says Vanderbilt's William Schaffner. "But the reality is, if the team is losing, you change the coach. Then agencies really have to buckle down because it will take some time to restore their hard-earned reputations."
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
A company uses AI to fight muscle loss and unhealthy aging
There’s a growing need to slow down the aging process. The world’s population is getting older and, according to one estimate, 80 million Americans will be 65 or older by 2040. As we age, the risk of many chronic diseases goes up, from cancer to heart disease to Alzheimer’s.
BioAge Labs, a company based in California, is using genetic data to help people stay healthy for longer. CEO Kristen Fortney was inspired by the genetics of people who live long lives and resist many age-related diseases. In 2015, she started BioAge to study them and develop drug therapies based on the company’s learnings.
The team works with special biobanks that have been collecting blood samples and health data from individuals for up to 45 years. Using artificial intelligence, BioAge is able to find the distinctive molecular features that distinguish those who have healthy longevity from those who don’t.
In December 2022, BioAge published findings on a drug that worked to prevent muscular atrophy, or the loss of muscle strength and mass, in older people. Much of the research on aging has been in worms and mice, but BioAge is focused on human data, Fortney says. “This boosts our chances of developing drugs that will be safe and effective in human patients.”
How it works
With assistance from AI, BioAge measures more than 100,000 molecules in each blood sample, looking at proteins, RNA and metabolites, or small molecules that are produced through chemical processes. The company uses many techniques to identify these molecules, some of which convert the molecules into charged atoms and then separating them according to their weight and charge. The resulting data is very complex, with many thousands of data points from patients being followed over the decades.
BioAge validates its targets by examining whether a pathway going awry is actually linked to the development of diseases, based on the company’s analysis of biobank health records and blood samples. The team uses AI and machine learning to identify these pathways, and the key proteins in the unhealthy pathways become their main drug targets. “The approach taken by BioAge is an excellent example of how we can harness the power of big data and advances in AI technology to identify new drugs and therapeutic targets,” says Lorna Harries, a professor of molecular genetics at the University of Exeter Medical School.
Martin Borch Jensen is the founder of Gordian Biotechnology, a company focused on using gene therapy to treat aging. He says BioAge’s use of AI allows them to speed up the process of finding promising drug candidates. However, it remains a challenge to separate pathologies from aspects of the natural aging process that aren’t necessarily bad. “Some of the changes are likely protective responses to things going wrong,” Jensen says. “Their data doesn’t…distinguish that so they’ll need to validate and be clever.”
Developing a drug for muscle loss
BioAge decided to focus on muscular atrophy because it affects many elderly people, making it difficult to perform everyday activities and increasing the risk of falls. Using the biobank samples, the team modeled different pathways that looked like they could improve muscle health. They found that people who had faster walking speeds, better grip strength and lived longer had higher levels of a protein called apelin.
Apelin is a peptide, or a small protein, that circulates in the blood. It is involved in the process by which exercise increases and preserves muscle mass. BioAge wondered if they could prevent muscular atrophy by increasing the amount of signaling in the apelin pathway. Instead of the long process of designing a drug, they decided to repurpose an existing drug made by another biotech company. This company, called Amgen, had explored the drug as a way to treat heart failure. It didn’t end up working for that purpose, but BioAge took note that the drug did seem to activate the apelin pathway.
BioAge tested its new, repurposed drug, BGE-105, and, in a phase 1 clinical trial, it protected subjects from getting muscular atrophy compared to a placebo group that didn’t receive the drug. Healthy volunteers over age 65 received infusions of the drug during 10 days spent in bed, as if they were on bed rest while recovering from an illness or injury; the elderly are especially vulnerable to muscle loss in this situation. The 11 people taking BGE-105 showed a 100 percent improvement in thigh circumference compared to 10 people taking the placebo. Ultrasound observations also revealed that the group taking the durg had enhanced muscle quality and a 73 percent increase in muscle thickness. One volunteer taking BGE-105 did have muscle loss compared to the the placebo group.
Heather Whitson, the director of the Duke University Centre for the study of aging and human development, says that, overall, the results are encouraging. “The clinical findings so far support the premise that AI can help us sort through enormous amounts of data and identify the most promising points for beneficial interventions.”
More studies are needed to find out which patients benefit the most and whether there are side effects. “I think further studies will answer more questions,” Whitson says, noting that BGE-105 was designed to enhance only one aspect of physiology associated with exercise, muscle strength. But exercise itself has many other benefits on mood, sleep, bones and glucose metabolism. “We don’t know whether BGE-105 will impact these other outcomes,” she says.
The future
BioAge is planning phase 2 trials for muscular atrophy in patients with obesity and those who have been hospitalized in an intensive care unit. Using the data from biobanks, they’ve also developed another drug, BGE-100, to treat chronic inflammation in the brain, a condition that can worsen with age and contributes to neurodegenerative diseases. The team is currently testing the drug in animals to assess its effects and find the right dose.
BioAge envisions that its drugs will have broader implications for health than treating any one specific disease. “Ultimately, we hope to pioneer a paradigm shift in healthcare, from treatment to prevention, by targeting the root causes of aging itself,” Fortney says. “We foresee a future where healthy longevity is within reach for all.”
How old fishing nets turn into chairs, car mats and Prada bags
Discarded nylon fishing nets in the oceans are among the most harmful forms of plastic pollution. Every year, about 640,000 tons of fishing gear are left in our oceans and other water bodies to turn into death traps for marine life. London-based non-profit World Animal Protection estimates that entanglement in this “ghost gear” kills at least 136,000 seals, sea lions and large whales every year. Experts are challenged to estimate how many birds, turtles, fish and other species meet the same fate because the numbers are so high.
Since 2009, Giulio Bonazzi, the son of a small textile producer in northern Italy, has been working on a solution: an efficient recycling process for nylon. As CEO and chairman of a company called Aquafil, Bonazzi is turning the fibers from fishing nets – and old carpets – into new threads for car mats, Adidas bikinis, environmentally friendly carpets and Prada bags.
For Bonazzi, shifting to recycled nylon was a question of survival for the family business. His parents founded a textile company in 1959 in a garage in Verona, Italy. Fifteen years later, they started Aquafil to produce nylon for making raincoats, an enterprise that led to factories on three continents. But before the turn of the century, cheap products from Asia flooded the market and destroyed Europe’s textile production. When Bonazzi had finished his business studies and prepared to take over the family company, he wondered how he could produce nylon, which is usually produced from petrochemicals, in a way that was both successful and ecologically sustainable.
The question led him on an intellectual journey as he read influential books by activists such as world-renowned marine biologist Sylvia Earle and got to know Michael Braungart, who helped develop the Cradle-to-Cradle ethos of a circular economy. But the challenges of applying these ideologies to his family business were steep. Although fishing nets have become a mainstay of environmental fashion ads—and giants like Dupont and BASF have made breakthroughs in recycling nylon—no one had been able to scale up these efforts.
For ten years, Bonazzi tinkered with ideas for a proprietary recycling process. “It’s incredibly difficult because these products are not made to be recycled,” Bonazzi says. One complication is the variety of materials used in older carpets. “They are made to be beautiful, to last, to be useful. We vastly underestimated the difficulty when we started.”
Soon it became clear to Bonazzi that he needed to change the entire production process. He found a way to disintegrate old fibers with heat and pull new strings from the discarded fishing nets and carpets. In 2022, his company Aquafil produced more than 45,000 tons of Econyl, which is 100% recycled nylon, from discarded waste.
More than half of Aquafil’s recyclate is from used goods. According to the company, the recycling saves 90 percent of the CO2 emissions compared to the production of conventional nylon. That amounts to saving 57,100 tons of CO2 equivalents for every 10,000 tons of Econyl produced.
Bonazzi collects fishing nets from all over the world, including Norway and Chile—which have the world’s largest salmon productions—in addition to the Mediterranean, Turkey, India, Japan, Thailand, the Philippines, Pakistan, and New Zealand. He counts the government leadership of Seychelles as his most recent client; the island has prohibited ships from throwing away their fishing nets, creating the demand for a reliable recycler. With nearly 3,000 employees, Aquafil operates almost 40 collection and production sites in a dozen countries, including four collection sites for old carpets in the U.S., located in California and Arizona.
First, the dirty nets are gathered, washed and dried. Bonazzi explains that nets often have been treated with antifouling agents such as copper oxide. “We recycle the coating separately,” he says via Zoom from his home near Verona. “Copper oxide is a useful substance, why throw it away?”
Still, only a small percentage of Aquafil’s products are made from nets fished out of the ocean, so your new bikini may not have saved a strangled baby dolphin. “Generally, nylon recycling is a good idea,” says Christian Schiller, the CEO of Cirplus, the largest global marketplace for recyclates and plastic waste. “But contrary to what consumers think, people rarely go out to the ocean to collect ghost nets. Most are old, discarded nets collected on land. There’s nothing wrong with this, but I find it a tad misleading to label the final products as made from ‘ocean plastic,’ prompting consumers to think they’re helping to clean the oceans by buying these products.”
Aquafil gets most of its nets from aqua farms. Surprisingly, one of Aquafil’s biggest problems is finding enough waste. “I know, it’s hard to believe because waste is everywhere,” Bonazzi says. “But we need to find it in reliable quantity and quality.” He has invested millions in establishing reliable logistics to source the fishing nets. Then the nets get shredded into granules that can be turned into car mats for the new Hyundai Ioniq 5 or a Gucci swimsuit.
The process works similarly with carpets. In the U.S. alone, 3.5 billion pounds of carpet are discarded in landfills every year, and less than 3 percent are currently recycled. Aquafil has built a recycling plant in Phoenix to help divert 12,500 tons of carpets from the landfill every year. The carpets are shredded and deconstructed into three components: fillers such as calcium carbonate will be reused in the cement industry, synthetic fibers like polypropylene can be used for engineering plastics, and nylon. Only the pelletized nylon gets shipped back to Europe for the production of Econyl. “We ship only what’s necessary,” Bonazzi says. Nearly 50 percent of his nylon in Italy and Slovenia is produced from recyclate, and he hopes to increase the percentage to two-thirds in the next two years.
His clients include Interface, the leading world pioneer for sustainable flooring, and many other carpet producers plus more than 2500 fashion labels, including Gucci, Prada, Patagonia, Louis Vuitton, Adidas and Stella McCartney. “Stella McCartney just introduced a parka that’s made 100 percent from Econyl,” Bonazzi says. “We’re also in a lot of sportswear because Nylon is a good fabric for swimwear and for yoga clothes.” Next, he’s looking into sunglasses and chairs made with Econyl - for instance, the flexible ergonomic noho chair, designed by New Zealand company Formway.
“When I look at a landfill, I see a gold mine," Bonazzi says.
“Bonazzi decided many years ago to invest in the production of recycled nylon though industry giants halted similar plans after losing large investments,” says Anika Herrmann, vice president of the German Greentech-competitor Camm Solutions, which creates bio-based polymers from cane sugar and other ag waste. “We need role models like Bonazzi who create sustainable solutions with courage and a pioneering spirit. Like Aquafil, we count on strategic partnerships to enable fast upscaling along the entire production chain.”
Bonazzi’s recycled nylon is still five to 10 percent more expensive than conventionally produced material. However, brands are increasingly bending to the pressure of eco-conscious consumers who demand sustainable fashion. What helped Bonazzi was the recent rise of oil prices and the pressure on industries to reduce their carbon footprint. Now Bonazzi says, “When I look at a landfill, I see a gold mine.”
Ideally, the manufacturers take the products back when the client is done with it, and because the nylon can theoretically be reused nearly infinitely, the chair or bikini could be made into another chair or bikini. “But honestly,” Bonazzi half-jokes, “if someone returns a McCartney parka to me, I’ll just resell it because it’s so expensive.”
The next step: Bonazzi wants to reshape the entire nylon industry by pivoting from post-consumer nylon to plant-based nylon. In 2017, he began producing “nylon-6,” together with Genomatica in San Diego. The process uses sugar instead of petroleum. “The idea is to make the very same molecule from sugar, not from oil,” he says. The demonstration plant in Ljubljana, Slovenia, has already produced several hundred tons of nylon, and Genomatica is collaborating with Lululemon to produce plant-based yoga wear.
Bonazzi acknowledges that his company needs a few more years before the technology is ready to meet his ultimate goal, producing only recyclable products with no petrochemicals, low emissions and zero waste on an industrial scale. “Recycling is not enough,” he says. “You also need to produce the primary material in a sustainable way, with a low carbon footprint.”