The Nation’s Science and Health Agencies Face a Credibility Crisis: Can Their Reputations Be Restored?
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
It didn't have to be this way. More than 200,000 Americans dead, seven million infected, with numbers continuing to climb, an economy in shambles with millions out of work, hundreds of thousands of small businesses crushed with most of the country still under lockdown. And all with no end in sight. This catastrophic result is due in large part to the willful disregard of scientific evidence and of muzzling policy experts by the Trump White House, which has spent its entire time in office attacking science.
One of the few weapons we had to combat the spread of Covid-19—wearing face masks—has been politicized by the President, who transformed this simple public health precaution into a first amendment issue to rally his base. Dedicated public health officials like Dr. Anthony Fauci, the highly respected director of the National Institute of Allergies and Infectious Diseases, have received death threats, which have prompted many of them around the country to resign.
Over the summer, the Trump White House pressured the Centers for Disease Control, which is normally in charge of fighting epidemics, to downplay COVID risks among young people and encourage schools to reopen. And in late September, the CDC was forced to pull federal teams who were going door-to-door doing testing surveys in Minnesota because of multiple incidents of threats and abuse. This list goes on and on.
Still, while the Trump administration's COVID failures are the most visible—and deadly—the nation's entire federal science infrastructure has been undermined in ways large and small.
The White House has steadily slashed monies for science—the 2021 budget cuts funding by 10–30% or more for crucial agencies like National Oceanic and Atmospheric Administration (NOAA) and the Environmental Protection Agency (EPA)—and has gutted health and science agencies across the board, including key agencies of the Department of Energy and the Interior, especially in divisions that deal with issues they oppose ideologically like climate change.
Even farmers can't get reliable information about how climate change affects planting seasons because the White House moved the entire staff at the U.S. Department of Agriculture agency who does this research, relocating them from Maryland to Kansas City, Missouri. Many of these scientists couldn't uproot their families and sell their homes, so the division has had to pretty much start over from scratch with a skeleton crew.
More than 1,600 federal scientists left government in the first two years of the Trump Administration, according to data compiled by the Washington Post, and one-fifth of top positions in science are vacant, depriving agencies of the expertise they need to fulfill their vital functions. Industry executives and lobbyists have been installed as gatekeepers—HHS Secretary Alex Azar was previously president of Eli Lilly, and three climate change deniers were appointed to key posts at the National Oceanic and Atmospheric Administration, to cite just a couple of examples. Trump-appointed officials have sidelined, bullied, or even vilified those who dare to speak out, which chills the rigorous debate that is the essential to sound, independent science.
"The CDC needs to be able to speak regularly to the American people to explain what it knows and how it knows it."
Linda Birnbaum knows firsthand what it's like to become a target. The microbiologist recently retired after more than a decade as the director of the National Institute of Environmental Health Sciences, which is the world's largest environmental health organization and the greatest funder of environmental health and toxicology research, a position that often put her agency at odds with the chemical and fossil fuel industry. There was an attempt to get her fired, she says, "because I had the nerve to write that science should be used in making policy. The chemical industry really went after me, and my last two years were not so much fun under this administration. I'd like to believe it was because I was making a difference—if I wasn't, they wouldn't care."
Little wonder that morale at federal agencies is low. "We're very frustrated," says Dr. William Schaffner, a veteran infectious disease specialist and a professor of medicine at the Vanderbilt University School of Medicine in Nashville. "My colleagues within these agencies, the CDC rank and file, are keeping their heads down doing the best they can, and they hope to weather this storm."
The cruel irony is that the United States was once a beacon of scientific innovation. In the heady post World War II years, while Europe lay in ruins, the successful development of penicillin and the atomic bomb—which Americans believed helped vanquish the Axis powers—unleashed a gusher of public money into research, launching an unprecedented era of achievement in American science. Scientists conquered polio, deciphered the genetic code, harnessed the power of the atom, invented lasers, transistors, microchips and computers, sent missions beyond Mars, and landed men on the moon. A once-inconsequential hygiene laboratory was transformed into the colossus the National Institutes of Health has become, which remains today the world's flagship medical research center, unrivaled in size and scope.
At the same time, a tiny public health agency headquartered in Atlanta, which had been in charge of eradicating the malaria outbreaks that plagued impoverished rural areas in the Deep South until the late 1940s, evolved into the Centers for Disease Control and Prevention. The CDC became the world's leader in fighting disease outbreaks, and the agency's crack team of epidemiologists—members of the vaunted Epidemic Intelligence Service—were routinely dispatched to battle global outbreaks of contagions such as Ebola and malaria and help lead the vaccination campaigns to eradicate killers like polio and small pox that have saved millions of lives.
What will it take to rebuild our federal science infrastructure and restore not only the public's confidence but the respect of the world's scientific community? There are some hopeful signs that there is pushback against the current national leadership, and non-profit watchdog groups like the Union of Concerned Scientists have mapped out comprehensive game plans to restore public trust and the integrity of science.
These include methods of protecting science from political manipulation; restoring the oversight role of independent federal advisory committees, whose numbers were decimated by recent executive orders; strengthening scientific agencies that have been starved by budget cuts and staff attrition; and supporting whistleblower protections and allowing scientists to do their jobs without political meddling to restore integrity to the process. And this isn't just a problem at the CDC. A survey of 1,600 EPA scientists revealed that more than half had been victims of political interference and were pressured to skew their findings, according to research released in April by the Union of Concerned Scientists.
"Federal agencies are staffed by dedicated professionals," says Andrew Rosenberg, director of the Center for Science and Democracy at the Union of Concerned Scientists and a former fisheries biologist for NOAA. "Their job is not to serve the president but the public interest. Inspector generals are continuing to do what they're supposed to, but their findings are not being adhered to. But they need to hold agencies accountable. If an agency has not met its mission or engaged in misconduct, there needs to be real consequences."
On other fronts, last month nine vaccine makers, including Sanofi, Pfizer, and AstraZeneca, took the unprecedented stop of announcing that their COVID-19 vaccines would be thoroughly vetted before they were released. In their implicit refusal to bow to political pressure from the White House to have a vaccine available before the election, their goal was to restore public confidence in vaccine safety, and ensure that enough Americans would consent to have the shot when it was eventually approved so that we'd reach the long-sought holy grail of herd immunity.
"That's why it's really important that all of the decisions need to be made with complete transparency and not taking shortcuts," says Dr. Tom Frieden, president and CEO of Resolve to Save Lives and former director of the CDC during the H1N1, Ebola, and Zika emergencies. "A vaccine is our most important tool, and we can't break that tool by meddling in the science approval process."
In late September, Senate Democrats introduced a new bill to halt political meddling in public health initiatives by the White House. Called Science and Transparency Over Politics Act (STOP), the legislation would create an independent task force to investigate political interference in the federal response to the coronavirus pandemic. "The Trump administration is still pushing the president's political priorities rather than following the science to defeat this virus," Senate Minority Leader Chuck Schumer said in a press release.
To effectively bring the pandemic under control and restore public confidence, the CDC must assume the leadership role in fighting COVID-19. During previous outbreaks, the top federal infectious disease specialists like Drs. Fauci and Frieden would have daily press briefings, and these need to resume. "The CDC needs to be able to speak regularly to the American people to explain what it knows and how it knows it," says Frieden, who cautions that a vaccine won't be a magic bullet. "There is no one thing that is going to make this virus go away. We need to continue to limit indoor exposures, wear masks, and do strategic testing, isolation, and quarantine. We need a comprehensive approach, and not just a vaccine."
We must also appoint competent and trustworthy leaders, says Rosenberg of the Union of Concerned Scientists. Top posts in too many science agencies are now filled by former industry executives and lobbyists with a built-in bias, as well as people lacking relevant scientific experience, many of whom were never properly vetted because of the current administration's penchant for bypassing Congress and appointing "acting" officials. "We've got great career people who have hung in, but in so much of the federal government, they just put in 'acting' people," says Linda Birnbaum. "They need to bring in better, qualified senior leadership."
Open positions need to be filled, too. Federal science agencies have been seriously crippled by staffing attrition, and the Trump Administration instituted a hiring freeze when it first came in. Staffing levels remain at least ten percent down from previous levels, says Birnbaum and in many agencies, like the EPA, "everything has come to a screeching halt, making it difficult to get anything done."
But in the meantime, the critical first step may be at the ballot box in November. Even Scientific American, the esteemed consumer science publication, for the first time in its 175-year history felt "compelled" to endorse a presidential candidate, Joe Biden, because of the enormity of the damage they say Donald Trump has inflicted on scientists, their legal protections, and on the federal science agencies.
"If the current administration continues, the national political leadership will be emboldened and will be even more assertive of their executive prerogatives and less concerned about traditional niceties, leading to further erosion of the activities of many federal agencies," says Vanderbilt's William Schaffner. "But the reality is, if the team is losing, you change the coach. Then agencies really have to buckle down because it will take some time to restore their hard-earned reputations."
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Meet Dr. Renee Wegrzyn, the first Director of President Biden's new health agency, ARPA-H
In today’s podcast episode, I talk with Renee Wegrzyn, appointed by President Biden as the first director of a health agency created last year, the Advanced Research Projects Agency for Health, or ARPA-H. It’s inspired by DARPA, the agency that develops innovations for the Defense department and has been credited with hatching world-changing technologies such as ARPANET, which became the internet.
Time will tell if ARPA-H will lead to similar achievements in the realm of health. That’s what President Biden and Congress expect in return for funding ARPA-H at 2.5 billion dollars over three years.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
How will the agency figure out which projects to take on, especially with so many patient advocates for different diseases demanding moonshot funding for rapid progress?
I talked with Dr. Wegrzyn about the opportunities and challenges, what lessons ARPA-H is borrowing from Operation Warp Speed, how she decided on the first ARPA-H project that was announced recently, why a separate agency was needed instead of reforming HHS and the National Institutes of Health to be better at innovation, and how ARPA-H will make progress on disease prevention in addition to treatments for cancer, Alzheimer’s and diabetes, among many other health priorities.
Dr. Wegrzyn’s resume leaves no doubt of her suitability for this role. She was a program manager at DARPA where she focused on applying gene editing and synthetic biology to the goal of improving biosecurity. For her work there, she received the Superior Public Service Medal and, in case that wasn’t enough ARPA experience, she also worked at another ARPA that leads advanced projects in intelligence, called I-ARPA. Before that, she ran technical teams in the private sector working on gene therapies and disease diagnostics, among other areas. She has been a vice president of business development at Gingko Bioworks and headed innovation at Concentric by Gingko. Her training and education includes a PhD and undergraduate degree in applied biology from the Georgia Institute of Technology and she did her postdoc as an Alexander von Humboldt Fellow in Heidelberg, Germany.
Dr. Wegrzyn told me that she’s “in the hot seat.” The pressure is on for ARPA-H especially after the need and potential for health innovation was spot lit by the pandemic and the unprecedented speed of vaccine development. We'll soon find out if ARPA-H can produce gamechangers in health that are equivalent to DARPA’s creation of the internet.
Show links:
ARPA-H - https://arpa-h.gov/
Dr. Wegrzyn profile - https://arpa-h.gov/people/renee-wegrzyn/
Dr. Wegrzyn Twitter - https://twitter.com/rwegrzyn?lang=en
President Biden Announces Dr. Wegrzyn's appointment - https://www.whitehouse.gov/briefing-room/statement...
Leaps.org coverage of ARPA-H - https://leaps.org/arpa/
ARPA-H program for joints to heal themselves - https://arpa-h.gov/news/nitro/ -
ARPA-H virtual talent search - https://arpa-h.gov/news/aco-talent-search/
Dr. Renee Wegrzyn was appointed director of ARPA-H last October.
Tiny, tough “water bears” may help bring new vaccines and medicines to sub-Saharan Africa
Microscopic tardigrades, widely considered to be some of the toughest animals on earth, can survive for decades without oxygen or water and are thought to have lived through a crash-landing on the moon. Also known as water bears, they survive by fully dehydrating and later rehydrating themselves – a feat only a few animals can accomplish. Now scientists are harnessing tardigrades’ talents to make medicines that can be dried and stored at ambient temperatures and later rehydrated for use—instead of being kept refrigerated or frozen.
Many biologics—pharmaceutical products made by using living cells or synthesized from biological sources—require refrigeration, which isn’t always available in many remote locales or places with unreliable electricity. These products include mRNA and other vaccines, monoclonal antibodies and immuno-therapies for cancer, rheumatoid arthritis and other conditions. Cooling is also needed for medicines for blood clotting disorders like hemophilia and for trauma patients.
Formulating biologics to withstand drying and hot temperatures has been the holy grail for pharmaceutical researchers for decades. It’s a hard feat to manage. “Biologic pharmaceuticals are highly efficacious, but many are inherently unstable,” says Thomas Boothby, assistant professor of molecular biology at University of Wyoming. Therefore, during storage and shipping, they must be refrigerated at 2 to 8 degrees Celsius (35 to 46 degrees Fahrenheit). Some must be frozen, typically at -20 degrees Celsius, but sometimes as low -90 degrees Celsius as was the case with the Pfizer Covid vaccine.
For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
The costly cold chain
The logistics network that ensures those temperature requirements are met from production to administration is called the cold chain. This cold chain network is often unreliable or entirely lacking in remote, rural areas in developing nations that have malfunctioning electrical grids. “Almost all routine vaccines require a cold chain,” says Christopher Fox, senior vice president of formulations at the Access to Advanced Health Institute. But when the power goes out, so does refrigeration, putting refrigerated or frozen medical products at risk. Consequently, the mRNA vaccines developed for Covid-19 and other conditions, as well as more traditional vaccines for cholera, tetanus and other diseases, often can’t be delivered to the most remote parts of the world.
To understand the scope of the challenge, consider this: In the U.S., more than 984 million doses of Covid-19 vaccine have been distributed so far. Each one needed refrigeration that, even in the U.S., proved challenging. Now extrapolate to all vaccines and the entire world. For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
Globally, the cold chain packaging market is valued at over $15 billion and is expected to exceed $60 billion by 2033.
Adobe Stock
Freeze-drying, also called lyophilization, which is common for many vaccines, isn’t always an option. Many freeze-dried vaccines still need refrigeration, and even medicines approved for storage at ambient temperatures break down in the heat of sub-Saharan Africa. “Even in a freeze-dried state, biologics often will undergo partial rehydration and dehydration, which can be extremely damaging,” Boothby explains.
The cold chain is also very expensive to maintain. The global pharmaceutical cold chain packaging market is valued at more than $15 billion, and is expected to exceed $60 billion by 2033, according to a report by Future Market Insights. This cost is only expected to grow. According to the consulting company Accenture, the number of medicines that require the cold chain are expected to grow by 48 percent, compared to only 21 percent for non-cold-chain therapies.
Tardigrades to the rescue
Tardigrades are only about a millimeter long – with four legs and claws, and they lumber around like bears, thus their nickname – but could provide a big solution. “Tardigrades are unique in the animal kingdom, in that they’re able to survive a vast array of environmental insults,” says Boothby, the Wyoming professor. “They can be dried out, frozen, heated past the boiling point of water and irradiated at levels that are thousands of times more than you or I could survive.” So, his team is gradually unlocking tardigrades’ survival secrets and applying them to biologic pharmaceuticals to make them withstand both extreme heat and desiccation without losing efficacy.
Boothby’s team is focusing on blood clotting factor VIII, which, as the name implies, causes blood to clot. Currently, Boothby is concentrating on the so-called cytoplasmic abundant heat soluble (CAHS) protein family, which is found only in tardigrades, protecting them when they dry out. “We showed we can desiccate a biologic (blood clotting factor VIII, a key clotting component) in the presence of tardigrade proteins,” he says—without losing any of its effectiveness.
The researchers mixed the tardigrade protein with the blood clotting factor and then dried and rehydrated that substance six times without damaging the latter. This suggests that biologics protected with tardigrade proteins can withstand real-world fluctuations in humidity.
Furthermore, Boothby’s team found that when the blood clotting factor was dried and stabilized with tardigrade proteins, it retained its efficacy at temperatures as high as 95 degrees Celsius. That’s over 200 degrees Fahrenheit, much hotter than the 58 degrees Celsius that the World Meteorological Organization lists as the hottest recorded air temperature on earth. In contrast, without the protein, the blood clotting factor degraded significantly. The team published their findings in the journal Nature in March.
Although tardigrades rarely live more than 2.5 years, they have survived in a desiccated state for up to two decades, according to Animal Diversity Web. This suggests that tardigrades’ CAHS protein can protect biologic pharmaceuticals nearly indefinitely without refrigeration or freezing, which makes it significantly easier to deliver them in locations where refrigeration is unreliable or doesn’t exist.
The tricks of the tardigrades
Besides the CAHS proteins, tardigrades rely on a type of sugar called trehalose and some other protectants. So, rather than drying up, their cells solidify into rigid, glass-like structures. As that happens, viscosity between cells increases, thereby slowing their biological functions so much that they all but stop.
Now Boothby is combining CAHS D, one of the proteins in the CAHS family, with trehalose. He found that CAHS D and trehalose each protected proteins through repeated drying and rehydrating cycles. They also work synergistically, which means that together they might stabilize biologics under a variety of dry storage conditions.
“We’re finding the protective effect is not just additive but actually is synergistic,” he says. “We’re keen to see if something like that also holds true with different protein combinations.” If so, combinations could possibly protect against a variety of conditions.
Commercialization outlook
Before any stabilization technology for biologics can be commercialized, it first must be approved by the appropriate regulators. In the U.S., that’s the U.S. Food and Drug Administration. Developing a new formulation would require clinical testing and vast numbers of participants. So existing vaccines and biologics likely won’t be re-formulated for dry storage. “Many were developed decades ago,” says Fox. “They‘re not going to be reformulated into thermo-stable vaccines overnight,” if ever, he predicts.
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits.
Instead, this technology is most likely to be used for the new products and formulations that are just being created. New and improved vaccines will be the first to benefit. Good candidates include the plethora of mRNA vaccines, as well as biologic pharmaceuticals for neglected diseases that affect parts of the world where reliable cold chain is difficult to maintain, Boothby says. Some examples include new, more effective vaccines for malaria and for pathogenic Escherichia coli, which causes diarrhea.
Tallying up the benefits
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits. For instance, MenAfriVac, a meningitis vaccine (without tardigrade proteins) developed for sub-Saharan Africa, can be stored at up to 40 degrees Celsius for four days before administration. “If you have a few days where you don’t need to maintain the cold chain, it’s easier to transport vaccines to remote areas,” Fox says, where refrigeration does not exist or is not reliable.
Better health is an obvious benefit. MenAfriVac reduced suspected meningitis cases by 57 percent in the overall population and more than 99 percent among vaccinated individuals.
Lower healthcare costs are another benefit. One study done in Togo found that the cold chain-related costs increased the per dose vaccine price up to 11-fold. The ability to ship the vaccines using the usual cold chain, but transporting them at ambient temperatures for the final few days cut the cost in half.
There are environmental benefits, too, such as reducing fuel consumption and greenhouse gas emissions. Cold chain transports consume 20 percent more fuel than non-cold chain shipping, due to refrigeration equipment, according to the International Trade Administration.
A study by researchers at Johns Hopkins University compared the greenhouse gas emissions of the new, oral Vaxart COVID-19 vaccine (which doesn’t require refrigeration) with four intramuscular vaccines (which require refrigeration or freezing). While the Vaxart vaccine is still in clinical trials, the study found that “up to 82.25 million kilograms of CO2 could be averted by using oral vaccines in the U.S. alone.” That is akin to taking 17,700 vehicles out of service for one year.
Although tardigrades’ protective proteins won’t be a component of biologic pharmaceutics for several years, scientists are proving that this approach is viable. They are hopeful that a day will come when vaccines and biologics can be delivered anywhere in the world without needing refrigerators or freezers en route.