The Science Sleuth Holding Fraudulent Research Accountable
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Introduction by Mary Inman, Whistleblower Attorney
For most people, when they see the word "whistleblower," the image that leaps to mind is a lone individual bravely stepping forward to shine a light on misconduct she has witnessed first-hand. Meryl Streep as Karen Silkwood exposing safety violations observed while working the line at the Kerr-McGee plutonium plant. Matt Damon as Mark Whitacre in The Informant!, capturing on his pocket recorder clandestine meetings between his employer and its competitors to fix the price of lysine. However, a new breed of whistleblower is emerging who isn't at the scene of the crime but instead figures it out after the fact through laborious review of publicly available information and expert analysis. Elisabeth Bik belongs to this new class of whistleblower.
"There's this delicate balance where on one hand we want to spread results really fast as scientists, but on the other hand, we know it's incomplete, it's rushed and it's not great."
Using her expertise as a microbiologist and her trained eye, Bik studies publicly available scientific papers to sniff out potential irregularities in the images that suggest research fraud, later seeking retraction of the offending paper from the journal's publisher. There's no smoking gun, no first-hand account of any kind. Just countless hours spent reviewing scores of scientific papers and Bik's skills and dedication as a science fraud sleuth.
While Bik's story may not as readily lend itself to the big screen, her work is nonetheless equally heroic. By tirelessly combing scientific papers to expose research fraud, Bik is playing a vital role in holding the scientific publishing process accountable and ensuring that misleading information does not spread unchecked. This is important work in any age, but particularly so in the time of COVID, where we can ill afford the setbacks and delays of scientists building on false science. In the present climate, where science is politicized and scientific principles are under attack, strong voices like Bik's must rise above the din to ensure the scientific information we receive, and our governments act upon, is accurate. Our health and wellbeing depend on it.
Whistleblower outsiders like Bik are challenging the traditional concept of what it means to be a whistleblower. Fortunately for us, the whistleblower community is a broad church. As with most ecosystems, we all benefit from a diversity of voices —whistleblower insiders and outsiders alike. What follows is an illuminating conversation between Bik, and Ivan Oransky, the co-founder of Retraction Watch, an influential blog that reports on retractions of scientific papers and related topics. (Conversation facilitated by LeapsMag Editor-in-Chief Kira Peikoff)
Elisabeth Bik and Ivan Oransky.
(Photo credits Michel & Co Photography, San Jose, CA and Elizabeth Solaka)
Ivan
I'd like to hear your thoughts, Elisabeth, on an L.A. Times story, which was picking up a preprint about mutations and the novel coronavirus, alleging that the virus is mutating to become more infectious – even though this conclusion wasn't actually warranted.
Elisabeth
A lot of the news around it is picking up on one particular side of the story that is maybe not that much exaggerated by the scientists. I don't think this paper really showed that the mutations were causing the virus to be more virulent. Some of these viruses continuously mutate and mutate and mutate, and that doesn't necessarily make a strain more virulent. I think in many cases, a lot of people want to read something in a paper that is not actually there.
Ivan
The tone level, everything that's being published now, it's problematic. It's being rushed, here it wasn't even peer-reviewed. But even when they are peer-reviewed, they're being peer-reviewed by people who often aren't really an expert in that particular area.
Elisabeth
That's right.
Ivan
To me, it's all problematic. At the same time, it's all really good that it's all getting out there. I think that five or 10 years ago, or if we weren't in a pandemic, maybe that paper wouldn't have appeared at all. It would have maybe been submitted to a top-ranked journal and not have been accepted, or maybe it would have been improved during peer review and bounced down the ladder a bit to a lower-level journal.
Yet, now, because it's about coronavirus, it's in a major newspaper and, in fact, it's getting critiqued immediately.
Maybe it's too Pollyanna-ish, but I actually think that quick uploading is a good thing. The fear people have about preprint servers is based on this idea that the peer-reviewed literature is perfect. Once it is in a peer-reviewed journal, they think it must have gone through this incredible process. You're laughing because-
Elisabeth
I am laughing.
Ivan
You know it's not true.
Elisabeth
Yes, we both know that. I agree and I think in this particular situation, a pandemic that is unlike something our generation has seen before, there is a great, great need for fast dissemination of science.
If you have new findings, it is great that there is a thing called a preprint server where scientists can quickly share their results, with, of course, the caveat that it's not peer-reviewed yet.
It's unlike the traditional way of publishing papers, which can take months or years. Preprint publishing is a very fast way of spreading your results in a good way so that is what the world needs right now.
On the other hand, of course, there's the caveat that these are brand new results and a good scientist usually thinks about their results to really interpret it well. You have to look at it from all sides and I think with the rushed publication of preprint papers, there is no such thing as carefully thinking about what results might mean.
So there's this delicate balance where on one hand we want to spread results really fast as scientists, but on the other hand, we know it's incomplete, it's rushed and it's not great. This might be hard for the general audience to understand.
Ivan
I still think the benefits of that dissemination are more positive than negative.
Elisabeth
Right. But there's also so many papers that come out now on preprint servers and most of them are not that great, but there are some really good studies in there. It's hard to find those nuggets of really great papers. There's just a lot of papers that come out now.
Ivan
Well, you've made more than a habit of finding problems in papers. These are mostly, of course, until now published papers that you examined, but what is this time like for you? How is it different?
Elisabeth
It's different because in the beginning I looked at several COVID-19-related papers that came out and wrote some critiques about it. I did experience a lot of backlash because of that. So I felt I had to take a break from social media and from writing about COVID-19.
I focused a little bit more on other work because I just felt that a lot of these papers on COVID-19 became so politically divisive that if you tried to be a scientist and think critically about a paper, you were actually assigned to a particular political party or to be against other political parties. It's hard for me to be sucked into the political discussion and to the way that our society now is so completely divided into two camps that seem to be not listening to each other.
Ivan
I was curious about that because I've followed your work for a number of years, as you know, and certainly you have had critics before. I'm thinking of the case in China that you uncovered, the leading figure in the Chinese Academy who was really a powerful political figure in addition to being a scientist.
Elisabeth
So that was a case in which I found a couple of papers at first from a particular group in China, and I was just posting on a website called PubPeer, where you can post comments, concerns about papers. And in this case, these were image duplication issues, which is my specialty.
I did not realize that the group I was looking at at that moment was led by one of the highest ranked scientists in China. If I had known that, I would probably not have posted that under my full name, but under a pseudonym. Since I had already posted, some people were starting to send me direct messages on Twitter like, "OMG, the guy you're posting about now is the top scientist in China so you're going to have a lot of backlash."
Then I decided I'll just continue doing this. I found a total of around 50 papers from this group and posted all of them on PubPeer. That story quickly became a very popular story in China: number two on Sina Weibo, a social media site in China.
I was surprised it wasn't suppressed by the Chinese government, it was actually allowed by journalists that were writing about it, and I didn't experience a lot of backlash because of that.
Actually the Chinese doctor wrote me an email saying that he appreciated my feedback and that he would look into these cases. He sent a very polite email so I sent him back that I appreciated that he would look into these cases and left it there.
Ivan
There are certain subjects that I know when we write about them in Retraction Watch, they have tended in the past to really draw a lot of ire. I'm thinking anything about vaccines and autism, anything about climate change, stem cell research.
For a while that last subject has sort of died down. But now it's become a highly politically charged atmosphere. Do you feel that this pandemic has raised the profile of people such as yourself who we refer to as scientific sleuths, people who look critically and analytically at new research?
Elisabeth
Yeah, some people. But I'm also worried that some people who are great scientists and have shown a lot of critical thinking are being attacked because of that. If you just look at what happened to Dr. Fauci, I think that's a prime example. Where somebody who actually is very knowledgeable and very cautious of new science has not been widely accepted as a great leader, in our country at least. It's sad to see that. I'm just worried how long he will be at his position, to be honest.
Ivan
We noticed a big uptick in our traffic in the last few days to Retraction Watch and it turns out it was because someone we wrote about a number of years ago has really hopped on the bandwagon to try and discredit and even try to have Dr. Fauci fired.
It's one of these reminders that the way people think about scientists has, in many cases, far more to do with their own history or their own perspective going in than with any reality or anything about the science. It's pretty disturbing, but it's not a new thing. This has been happening for a while.
You can go back and read sociologists of science from 50-60 years ago and see the same thing, but I just don't think that it's in the same way that it is now, maybe in part because of social media.
Elisabeth
I've been personally very critical about several studies, but this is the first time I've experienced being attacked by trolls and having some nasty websites written about me. It is very disturbing to read.
"I don't think that something that's been peer-reviewed is perfect and something that hasn't been peer reviewed, you should never bother reading it."
Ivan
It is. Yet you have been a fearless and vocal critic of some very high-profile papers, like the infamous French study about hydroxychloroquine.
Elisabeth
Right, the paper that came out was immediately tweeted by the President of the United States. At first I thought it was great that our President tweeted about science! I thought that was a major breakthrough. I took a look at this paper.
It had just come out that day, I believe. The first thing I noticed is that it was accepted within 24 hours of being submitted to the journal. It was actually published in a journal where one of the authors is the editor-in-chief, which is a huge conflict of interest, but it happens.
But in this particular case, there were also a lot of flaws with the study and that, I think, should have been caught during peer review. The paper was first published on a preprint server and then within 24 hours or so it was published in that paper, supposedly after peer review.
There were very few changes between the preprint version and the peer review paper. There were just a couple of extra lines, extra sentences added here and there, but it wasn't really, I think, critically looked at. Because there were a lot of things that I thought were flaws.
Just to go over a couple of them. This paper showed supposedly that people who were treated with hydroxychloroquine and azithromycin were doing much better by clearing their virus much faster than people who were not treated with these drugs.
But if you look carefully at the paper there were a couple of people who were left out of the study. So they were treated with hydroxychloroquine, but they were not shown in the end results of the paper. All six people who were treated with the drug combination were clearing the virus within six days, but there were a couple of others who were left out of the study. They also started the drug combination, but they stopped taking the drugs for several reasons and three of them were admitted to the intensive care, one died, one had some side effects and one apparently walked out of the hospital.
They were left out of the study but they were actually not doing very well with the drug combination. It's not very good science if you leave out people who don't do very well with your drug combination in your study. That was one of my biggest critiques of the paper.
Ivan
What struck us about that case was, in addition to what you, of course, mentioned, the fact that Trump tweeted it and was talking about hydroxychloroquine, was that it seemed to be a perfect example of, "well, it was in a peer review journal." Yeah, it was a preprint first, but, well, it's a peer review journal. And yet, as you point out, when you look at the history of the paper, it was accepted in 24 hours.
If you talk to most scientists, the actual act of a peer review, once you sit down to do it and can concentrate, a good one takes, again, these are averages, but four hours, a half a day is not unreasonable. So you had to find three people who could suddenly review this paper. As you pointed out, it was in a journal where one of the authors was editor.
Then some strange things also happened, right? The society that actually publishes the journal, they came out with a statement saying this wasn't up to our standards, which is odd. Then Elsevier came in, they're the ones who are actually contracted to publish the journal for the society. They said, basically, "Oh, we're going to look into this now too."
It just makes you wonder what happened before the paper was actually published. All the people who were supposed to have been involved in doing the peer review or checking on it are clearly very distraught about what actually happened. It's that scene from Casablanca, "I'm shocked, shocked there's gambling going on here." And then, "Your winnings, sir."
Elisabeth
Yes.
Ivan
And I don't actually blame the public, I don't blame reporters for getting a bit confused about what it all means and what they should trust. I don't think trust is a binary any more than anything else is a binary. I don't think that something that's been peer-reviewed is perfect and something that hasn't been peer reviewed, you should never bother reading it. I think everything is much more gray.
Yet we've turned things into a binary. Even if you go back before coronavirus, coffee is good for you, coffee is bad for you, red wine, chocolate, all the rest of it. A lot of that is because of this sort of binary construct of the world for journalists, frankly, for scientists that need to get their next grants. And certainly for the general public, they want answers.
On the one hand, if I had to choose what group of experts, or what field of human endeavor would I trust with finding the answer to a pandemic like this, or to any crisis, it would absolutely be scientists. Hands down. This is coming from someone who writes about scientific fraud.
But on the other hand, that means that if scientists aren't clear about what they don't know and about the nuances and about what the scientific method actually allows us to do and learn, that just sets them up for failure. It sets people like Dr. Fauci up for failure.
Elisabeth
Right.
Ivan
It sets up any public health official who has a discussion about models. There's a famous saying: "All models are wrong, but some are useful."
Just because the projections change, it's not proof of wrongness, it's not proof that the model is fatally flawed. In fact, I'd be really concerned if the projections didn't change based on new information. I would love it if this whole episode did lead to a better understanding of the scientific process and how scientific publishing fits into that — and doesn't fit into it.
Elisabeth
Yes, I'm with you. I'm very worried that the general audience's perspective is based on maybe watching too many movies where the scientist comes up with a conclusion one hour into the movie when everything is about to fail. Like that scene in Contagion where somebody injects, I think, eight monkeys, and one of the monkeys survives and boom we have the vaccine. That's not really how science works. Everything takes many, many years and many, many applications where usually your first ideas and your first hypothesis turn out to be completely wrong.
Then you go back to the drawing board, you develop another hypothesis and this is a very reiterative process that usually takes years. Most of the people who watch the movie might have a very wrong idea and wrong expectations about how science works. We're living in the movie Contagion and by September, we'll all be vaccinated and we can go on and live our lives. But that's not what is going to happen. It's going to take much, much longer and we're going to have to change the models every time and change our expectations. Just because we don't know all the numbers and all the facts yet.
Ivan
Generally it takes a fairly long time to change medical practice. A lot of times people see that as a bad thing. What I think that ignores, or at least doesn't take into as much account as I would, is that you don't want doctors and other health care professionals to turn on a dime and suddenly switch. Unless, of course, it turns out there was no evidence for what you were looking at.
It's a complicated situation.
Everybody wants scientists to be engineers, right?
Elisabeth
Right.
Ivan
I'm not saying engineering isn't scientific, nor am I saying that science is just completely whimsical, but there's a different process. It's a different way of looking at things and you can't just throw all the data into a big supercomputer, which is what I think a lot of people seem to want us to do, and then the obvious answer will come out on the other side.
Elisabeth
No. It's true and a lot of engineers suddenly feel their inherent need to solve this as a problem. They're not scientists and it's not building a bridge over a big river. But we're dealing with something that is very hard to solve because we don't understand the problem yet. I think scientists are usually first analyzing the problem and trying to understand what the problem actually is before you can even think about a solution.
Ivan
I think we're still at the understanding the problem phase.
Elisabeth
Exactly. And going back to the French group paper, that promised such a result and that was interpreted as such by a lot of people including presidents, but it's a very rare thing to find a medication that will have a 100% curation rate. That's something that I wish the people would understand better. We all want that to happen, but it's very unlikely and very unprecedented in the best of times.
Ivan
I would second that and also say that the world needs to better value the work that people like Elisabeth and others are doing. Because we're not going to get to a better answer if we're not rigorous about scrutinizing the literature and scrutinizing the methodology and scrutinizing the results.
"I quit my job to be able to do this work."
It's a relatively new phenomenon that you're able to do this at any scale at all, and even now it's at a very small scale. Elisabeth mentioned PubPeer and I'm a big fan — also full disclosure, I'm on their board of directors as a volunteer — it's a very powerful engine for readers and journal editors and other scientists to discuss issues.
And Elisabeth has used it really, really well. I think we need to start giving credit to people like that. And, also creating incentives for that kind of work in a way that science hasn't yet.
Elisabeth
Yeah. I quit my job to be able to do this work. It's really hard to combine it with a job either in academia or industry because we're looking for or criticizing papers and it's hard when you are still employed to do that.
I try to make it about the papers and do it in a polite way, but still it's a very hard job to do if you have a daytime job and a position and a career to worry about. Because if you're critical of other academics, that could actually mean the end of your career and that's sad. They should be more open to polite criticism.
Ivan
And for the general public, if you're reading a newspaper story or something online about a single study and it doesn't mention any other studies that have said the same thing or similar, or frankly, if it doesn't say anything about any studies that contradicted it, that's probably also telling you something.
Say you're looking at a huge painting of a shoreline, a beach, and a forest. Any single study is just a one-centimeter-by-one-centimeter square of any part of that canvas. If you just look at that, you would either think it was a painting of the sea, of a beach, or of the forest. It's actually all three of those things.
We just need to be patient, and that's very challenging to us as human beings, but we need to take the time to look at the whole picture.
DISCLAIMER: Neither Elisabeth Bik nor Ivan Oransky was compensated for participation in The Pandemic Issue. While the magazine's editors suggested broad topics for discussion, consistent with Bik's and Oransky's work, neither they nor the magazine's underwriters had any influence on their conversation.
[Editor's Note: This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Meet the Scientists on the Frontlines of Protecting Humanity from a Man-Made Pathogen
Jean Peccoud wasn't expecting an email from the FBI. He definitely wasn't expecting the agency to invite him to a meeting. "My reaction was, 'What did I do wrong to be on the FBI watch list?'" he recalls.
You use those blueprints for white-hat research—which is, indeed, why the open blueprints exist—or you can do the same for a black-hat attack.
He didn't know what the feds could possibly want from him. "I was mostly scared at this point," he says. "I was deeply disturbed by the whole thing."
But he decided to go anyway, and when he traveled to San Francisco for the 2008 gathering, the reason for the e-vite became clear: The FBI was reaching out to researchers like him—scientists interested in synthetic biology—in anticipation of the potential nefarious uses of this technology. "The whole purpose of the meeting was, 'Let's start talking to each other before we actually need to talk to each other,'" says Peccoud, now a professor of chemical and biological engineering at Colorado State University. "'And let's make sure next time you get an email from the FBI, you don't freak out."
Synthetic biology—which Peccoud defines as "the application of engineering methods to biological systems"—holds great power, and with that (as always) comes great responsibility. When you can synthesize genetic material in a lab, you can create new ways of diagnosing and treating people, and even new food ingredients. But you can also "print" the genetic sequence of a virus or virulent bacterium.
And while it's not easy, it's also not as hard as it could be, in part because dangerous sequences have publicly available blueprints. You use those blueprints for white-hat research—which is, indeed, why the open blueprints exist—or you can do the same for a black-hat attack. You could synthesize a dangerous pathogen's code on purpose, or you could unwittingly do so because someone tampered with your digital instructions. Ordering synthetic genes for viral sequences, says Peccoud, would likely be more difficult today than it was a decade ago.
"There is more awareness of the industry, and they are taking this more seriously," he says. "There is no specific regulation, though."
Trying to lock down the interconnected machines that enable synthetic biology, secure its lab processes, and keep dangerous pathogens out of the hands of bad actors is part of a relatively new field: cyberbiosecurity, whose name Peccoud and colleagues introduced in a 2018 paper.
Biological threats feel especially acute right now, during the ongoing pandemic. COVID-19 is a natural pathogen -- not one engineered in a lab. But future outbreaks could start from a bug nature didn't build, if the wrong people get ahold of the right genetic sequences, and put them in the right sequence. Securing the equipment and processes that make synthetic biology possible -- so that doesn't happen -- is part of why the field of cyberbiosecurity was born.
The Origin Story
It is perhaps no coincidence that the FBI pinged Peccoud when it did: soon after a journalist ordered a sequence of smallpox DNA and wrote, for The Guardian, about how easy it was. "That was not good press for anybody," says Peccoud. Previously, in 2002, the Pentagon had funded SUNY Stonybrook researchers to try something similar: They ordered bits of polio DNA piecemeal and, over the course of three years, strung them together.
Although many years have passed since those early gotchas, the current patchwork of regulations still wouldn't necessarily prevent someone from pulling similar tricks now, and the technological systems that synthetic biology runs on are more intertwined — and so perhaps more hackable — than ever. Researchers like Peccoud are working to bring awareness to those potential problems, to promote accountability, and to provide early-detection tools that would catch the whiff of a rotten act before it became one.
Peccoud notes that if someone wants to get access to a specific pathogen, it is probably easier to collect it from the environment or take it from a biodefense lab than to whip it up synthetically. "However, people could use genetic databases to design a system that combines different genes in a way that would make them dangerous together without each of the components being dangerous on its own," he says. "This would be much more difficult to detect."
After his meeting with the FBI, Peccoud grew more interested in these sorts of security questions. So he was paying attention when, in 2010, the Department of Health and Human Services — now helping manage the response to COVID-19 — created guidance for how to screen synthetic biology orders, to make sure suppliers didn't accidentally send bad actors the sequences that make up bad genomes.
Guidance is nice, Peccoud thought, but it's just words. He wanted to turn those words into action: into a computer program. "I didn't know if it was something you can run on a desktop or if you need a supercomputer to run it," he says. So, one summer, he tasked a team of student researchers with poring over the sentences and turning them into scripts. "I let the FBI know," he says, having both learned his lesson and wanting to get in on the game.
Peccoud later joined forces with Randall Murch, a former FBI agent and current Virginia Tech professor, and a team of colleagues from both Virginia Tech and the University of Nebraska-Lincoln, on a prototype project for the Department of Defense. They went into a lab at the University of Nebraska at Lincoln and assessed all its cyberbio-vulnerabilities. The lab develops and produces prototype vaccines, therapeutics, and prophylactic components — exactly the kind of place that you always, and especially right now, want to keep secure.
"We were creating wiki of all these nasty things."
The team found dozens of Achilles' heels, and put them in a private report. Not long after that project, the two and their colleagues wrote the paper that first used the term "cyberbiosecurity." A second paper, led by Murch, came out five months later and provided a proposed definition and more comprehensive perspective on cyberbiosecurity. But although it's now a buzzword, it's the definition, not the jargon, that matters. "Frankly, I don't really care if they call it cyberbiosecurity," says Murch. Call it what you want: Just pay attention to its tenets.
A Database of Scary Sequences
Peccoud and Murch, of course, aren't the only ones working to screen sequences and secure devices. At the nonprofit Battelle Memorial Institute in Columbus, Ohio, for instance, scientists are working on solutions that balance the openness inherent to science and the closure that can stop bad stuff. "There's a challenge there that you want to enable research but you want to make sure that what people are ordering is safe," says the organization's Neeraj Rao.
Rao can't talk about the work Battelle does for the spy agency IARPA, the Intelligence Advanced Research Projects Activity, on a project called Fun GCAT, which aims to use computational tools to deep-screen gene-sequence orders to see if they pose a threat. It can, though, talk about a twin-type internal project: ThreatSEQ (pronounced, of course, "threat seek").
The project started when "a government customer" (as usual, no one will say which) asked Battelle to curate a list of dangerous toxins and pathogens, and their genetic sequences. The researchers even started tagging sequences according to their function — like whether a particular sequence is involved in a germ's virulence or toxicity. That helps if someone is trying to use synthetic biology not to gin up a yawn-inducing old bug but to engineer a totally new one. "How do you essentially predict what the function of a novel sequence is?" says Rao. You look at what other, similar bits of code do.
"We were creating wiki of all these nasty things," says Rao. As they were working, they realized that DNA manufacturers could potentially scan in sequences that people ordered, run them against the database, and see if anything scary matched up. Kind of like that plagiarism software your college professors used.
Battelle began offering their screening capability, as ThreatSEQ. When customers -- like, currently, Twist Bioscience -- throw their sequences in, and get a report back, the manufacturers make the final decision about whether to fulfill a flagged order — whether, in the analogy, to give an F for plagiarism. After all, legitimate researchers do legitimately need to have DNA from legitimately bad organisms.
"Maybe it's the CDC," says Rao. "If things check out, oftentimes [the manufacturers] will fulfill the order." If it's your aggrieved uncle seeking the virulent pathogen, maybe not. But ultimately, no one is stopping the manufacturers from doing so.
Beyond that kind of tampering, though, cyberbiosecurity also includes keeping a lockdown on the machines that make the genetic sequences. "Somebody now doesn't need physical access to infrastructure to tamper with it," says Rao. So it needs the same cyber protections as other internet-connected devices.
Scientists are also now using DNA to store data — encoding information in its bases, rather than into a hard drive. To download the data, you sequence the DNA and read it back into a computer. But if you think like a bad guy, you'd realize that a bad guy could then, for instance, insert a computer virus into the genetic code, and when the researcher went to nab her data, her desktop would crash or infect the others on the network.
Something like that actually happened in 2017 at the USENIX security symposium, an annual programming conference: Researchers from the University of Washington encoded malware into DNA, and when the gene sequencer assembled the DNA, it corrupted the sequencer's software, then the computer that controlled it.
"This vulnerability could be just the opening an adversary needs to compromise an organization's systems," Inspirion Biosciences' J. Craig Reed and Nicolas Dunaway wrote in a paper for Frontiers in Bioengineering and Biotechnology, included in an e-book that Murch edited called Mapping the Cyberbiosecurity Enterprise.
Where We Go From Here
So what to do about all this? That's hard to say, in part because we don't know how big a current problem any of it poses. As noted in Mapping the Cyberbiosecurity Enterprise, "Information about private sector infrastructure vulnerabilities or data breaches is protected from public release by the Protected Critical Infrastructure Information (PCII) Program," if the privateers share the information with the government. "Government sector vulnerabilities or data breaches," meanwhile, "are rarely shared with the public."
"What I think is encouraging right now is the fact that we're even having this discussion."
The regulations that could rein in problems aren't as robust as many would like them to be, and much good behavior is technically voluntary — although guidelines and best practices do exist from organizations like the International Gene Synthesis Consortium and the National Institute of Standards and Technology.
Rao thinks it would be smart if grant-giving agencies like the National Institutes of Health and the National Science Foundation required any scientists who took their money to work with manufacturing companies that screen sequences. But he also still thinks we're on our way to being ahead of the curve, in terms of preventing print-your-own bioproblems: "What I think is encouraging right now is the fact that we're even having this discussion," says Rao.
Peccoud, for his part, has worked to keep such conversations going, including by doing training for the FBI and planning a workshop for students in which they imagine and work to guard against the malicious use of their research. But actually, Peccoud believes that human error, flawed lab processes, and mislabeled samples might be bigger threats than the outside ones. "Way too often, I think that people think of security as, 'Oh, there is a bad guy going after me,' and the main thing you should be worried about is yourself and errors," he says.
Murch thinks we're only at the beginning of understanding where our weak points are, and how many times they've been bruised. Decreasing those contusions, though, won't just take more secure systems. "The answer won't be technical only," he says. It'll be social, political, policy-related, and economic — a cultural revolution all its own.
Researchers Are Testing a New Stem Cell Therapy in the Hopes of Saving Millions from Blindness
Of all the infirmities of old age, failing sight is among the cruelest. It can mean the end not only of independence, but of a whole spectrum of joys—from gazing at a sunset or a grandchild's face to reading a novel or watching TV.
The Phase 1 trial will likely run through 2022, followed by a larger Phase 2 trial that could last another two or three years.
The leading cause of vision loss in people over 55 is age-related macular degeneration, or AMD, which afflicts an estimated 11 million Americans. As photoreceptors in the macula (the central part of the retina) die off, patients experience increasingly severe blurring, dimming, distortions, and blank spots in one or both eyes.
The disorder comes in two varieties, "wet" and "dry," both driven by a complex interaction of genetic, environmental, and lifestyle factors. It begins when deposits of cellular debris accumulate beneath the retinal pigment epithelium (RPE)—a layer of cells that nourish and remove waste products from the photoreceptors above them. In wet AMD, this process triggers the growth of abnormal, leaky blood vessels that damage the photoreceptors. In dry AMD, which accounts for 80 to 90 percent of cases, RPE cells atrophy, causing photoreceptors to wither away. Wet AMD can be controlled in about a quarter of patients, usually by injections of medication into the eye. For dry AMD, no effective remedy exists.
Stem Cells: Promise and Perils
Over the past decade, stem cell therapy has been widely touted as a potential treatment for AMD. The idea is to augment a patient's ailing RPE cells with healthy ones grown in the lab. A few small clinical trials have shown promising results. In a study published in 2018, for example, a University of Southern California team cultivated RPE tissue from embryonic stem cells on a plastic matrix and transplanted it into the retinas of four patients with advanced dry AMD. Because the trial was designed to test safety rather than efficacy, lead researcher Amir Kashani told a reporter, "we didn't expect that replacing RPE cells would return a significant amount of vision." Yet acuity improved substantially in one recipient, and the others regained their lost ability to focus on an object.
Therapies based on embryonic stem cells, however, have two serious drawbacks: Using fetal cell lines raises ethical issues, and such treatments require the patient to take immunosuppressant drugs (which can cause health problems of their own) to prevent rejection. That's why some experts favor a different approach—one based on induced pluripotent stem cells (iPSCs). Such cells, first produced in 2006, are made by returning adult cells to an undifferentiated state, and then using chemicals to reprogram them as desired. Treatments grown from a patient's own tissues could sidestep both hurdles associated with embryonic cells.
At least hypothetically. Today, the only stem cell therapies approved by the U.S. Food and Drug Administration (FDA) are umbilical cord-derived products for various blood and immune disorders. Although scientists are probing the use of embryonic stem cells or iPSCs for conditions ranging from diabetes to Parkinson's disease, such applications remain experimental—or fraudulent, as a growing number of patients treated at unlicensed "stem cell clinics" have painfully learned. (Some have gone blind after receiving bogus AMD therapies at those facilities.)
Last December, researchers at the National Eye Institute in Bethesda, Maryland, began enrolling patients with dry AMD in the country's first clinical trial using tissue grown from the patients' own stem cells. Led by biologist Kapil Bharti, the team intends to implant custom-made RPE cells in 12 recipients. If the effort pans out, it could someday save the sight of countless oldsters.
That, however, is what's technically referred to as a very big "if."
The First Steps
Bharti's trial is not the first in the world to use patient-derived iPSCs to treat age-related macular degeneration. In 2013, Japanese researchers implanted such cells into the eyes of a 77-year-old woman with wet AMD; after a year, her vision had stabilized, and she no longer needed injections to keep abnormal blood vessels from forming. A second patient was scheduled for surgery—but the procedure was canceled after the lab-grown RPE cells showed signs of worrisome mutations. That incident illustrates one potential problem with using stem cells: Under some circumstances, the cells or the tissue they form could turn cancerous.
"The knowledge and expertise we're gaining can be applied to many other iPSC-based therapies."
Bharti and his colleagues have gone to great lengths to avoid such outcomes. "Our process is significantly different," he told me in a phone interview. His team begins with patients' blood stem cells, which appear to be more genomically stable than the skin cells that the Japanese group used. After converting the blood cells to RPE stem cells, his team cultures them in a single layer on a biodegradable scaffold, which helps them grow in an orderly manner. "We think this material gives us a big advantage," Bharti says. The team uses a machine-learning algorithm to identify optimal cell structure and ensure quality control.
It takes about six months for a patch of iPSCs to become viable RPE cells. When they're ready, a surgeon uses a specially-designed tool to insert the tiny structure into the retina. Within days, the scaffold melts away, enabling the transplanted RPE cells to integrate fully into their new environment. Bharti's team initially tested their method on rats and pigs with eye damage mimicking AMD. The study, published in January 2019 in Science Translational Medicine, found that at ten weeks, the implanted RPE cells continued to function normally and protected neighboring photoreceptors from further deterioration. No trace of mutagenesis appeared.
Encouraged by these results, Bharti began recruiting human subjects. The Phase 1 trial will likely run through 2022, followed by a larger Phase 2 trial that could last another two or three years. FDA approval would require an even larger Phase 3 trial, with a decision expected sometime between 2025 and 2028—that is, if nothing untoward happens before then. One unknown (among many) is whether implanted cells can thrive indefinitely under the biochemically hostile conditions of an eye with AMD.
"Most people don't have a sense of just how long it takes to get something like this to work, and how many failures—even disasters—there are along the way," says Marco Zarbin, professor and chair of Ophthalmology and visual science at Rutgers New Jersey Medical School and co-editor of the book Cell-Based Therapy for Degenerative Retinal Diseases. "The first kidney transplant was done in 1933. But the first successful kidney transplant was in 1954. That gives you a sense of the time frame. We're really taking the very first steps in this direction."
Looking Ahead
Even if Bharti's method proves safe and effective, there's the question of its practicality. "My sense is that using induced pluripotent stem cells to treat the patient from whom they're derived is a very expensive undertaking," Zarbin observes. "So you'd have to have a very dramatic clinical benefit to justify that cost."
Bharti concedes that the price of iPSC therapy is likely to be high, given that each "dose" is formulated for a single individual, requires months to manufacture, and must be administered via microsurgery. Still, he expects economies of scale and production to emerge with time. "We're working on automating several steps of the process," he explains. "When that kicks in, a technician will be able to make products for 10 or 20 people at once, so the cost will drop proportionately."
Meanwhile, other researchers are pressing ahead with therapies for AMD using embryonic stem cells, which could be mass-produced to treat any patient who needs them. But should that approach eventually win FDA approval, Bharti believes there will still be room for a technique that requires neither fetal cell lines nor immunosuppression.
And not only for eye ailments. "The knowledge and expertise we're gaining can be applied to many other iPSC-based therapies," says the scientist, who is currently consulting with several companies that are developing such treatments. "I'm hopeful that we can leverage these approaches for a wide range of applications, whether it's for vision or across the body."