The Science Sleuth Holding Fraudulent Research Accountable
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Introduction by Mary Inman, Whistleblower Attorney
For most people, when they see the word "whistleblower," the image that leaps to mind is a lone individual bravely stepping forward to shine a light on misconduct she has witnessed first-hand. Meryl Streep as Karen Silkwood exposing safety violations observed while working the line at the Kerr-McGee plutonium plant. Matt Damon as Mark Whitacre in The Informant!, capturing on his pocket recorder clandestine meetings between his employer and its competitors to fix the price of lysine. However, a new breed of whistleblower is emerging who isn't at the scene of the crime but instead figures it out after the fact through laborious review of publicly available information and expert analysis. Elisabeth Bik belongs to this new class of whistleblower.
"There's this delicate balance where on one hand we want to spread results really fast as scientists, but on the other hand, we know it's incomplete, it's rushed and it's not great."
Using her expertise as a microbiologist and her trained eye, Bik studies publicly available scientific papers to sniff out potential irregularities in the images that suggest research fraud, later seeking retraction of the offending paper from the journal's publisher. There's no smoking gun, no first-hand account of any kind. Just countless hours spent reviewing scores of scientific papers and Bik's skills and dedication as a science fraud sleuth.
While Bik's story may not as readily lend itself to the big screen, her work is nonetheless equally heroic. By tirelessly combing scientific papers to expose research fraud, Bik is playing a vital role in holding the scientific publishing process accountable and ensuring that misleading information does not spread unchecked. This is important work in any age, but particularly so in the time of COVID, where we can ill afford the setbacks and delays of scientists building on false science. In the present climate, where science is politicized and scientific principles are under attack, strong voices like Bik's must rise above the din to ensure the scientific information we receive, and our governments act upon, is accurate. Our health and wellbeing depend on it.
Whistleblower outsiders like Bik are challenging the traditional concept of what it means to be a whistleblower. Fortunately for us, the whistleblower community is a broad church. As with most ecosystems, we all benefit from a diversity of voices —whistleblower insiders and outsiders alike. What follows is an illuminating conversation between Bik, and Ivan Oransky, the co-founder of Retraction Watch, an influential blog that reports on retractions of scientific papers and related topics. (Conversation facilitated by LeapsMag Editor-in-Chief Kira Peikoff)
Elisabeth Bik and Ivan Oransky.
(Photo credits Michel & Co Photography, San Jose, CA and Elizabeth Solaka)
Ivan
I'd like to hear your thoughts, Elisabeth, on an L.A. Times story, which was picking up a preprint about mutations and the novel coronavirus, alleging that the virus is mutating to become more infectious – even though this conclusion wasn't actually warranted.
Elisabeth
A lot of the news around it is picking up on one particular side of the story that is maybe not that much exaggerated by the scientists. I don't think this paper really showed that the mutations were causing the virus to be more virulent. Some of these viruses continuously mutate and mutate and mutate, and that doesn't necessarily make a strain more virulent. I think in many cases, a lot of people want to read something in a paper that is not actually there.
Ivan
The tone level, everything that's being published now, it's problematic. It's being rushed, here it wasn't even peer-reviewed. But even when they are peer-reviewed, they're being peer-reviewed by people who often aren't really an expert in that particular area.
Elisabeth
That's right.
Ivan
To me, it's all problematic. At the same time, it's all really good that it's all getting out there. I think that five or 10 years ago, or if we weren't in a pandemic, maybe that paper wouldn't have appeared at all. It would have maybe been submitted to a top-ranked journal and not have been accepted, or maybe it would have been improved during peer review and bounced down the ladder a bit to a lower-level journal.
Yet, now, because it's about coronavirus, it's in a major newspaper and, in fact, it's getting critiqued immediately.
Maybe it's too Pollyanna-ish, but I actually think that quick uploading is a good thing. The fear people have about preprint servers is based on this idea that the peer-reviewed literature is perfect. Once it is in a peer-reviewed journal, they think it must have gone through this incredible process. You're laughing because-
Elisabeth
I am laughing.
Ivan
You know it's not true.
Elisabeth
Yes, we both know that. I agree and I think in this particular situation, a pandemic that is unlike something our generation has seen before, there is a great, great need for fast dissemination of science.
If you have new findings, it is great that there is a thing called a preprint server where scientists can quickly share their results, with, of course, the caveat that it's not peer-reviewed yet.
It's unlike the traditional way of publishing papers, which can take months or years. Preprint publishing is a very fast way of spreading your results in a good way so that is what the world needs right now.
On the other hand, of course, there's the caveat that these are brand new results and a good scientist usually thinks about their results to really interpret it well. You have to look at it from all sides and I think with the rushed publication of preprint papers, there is no such thing as carefully thinking about what results might mean.
So there's this delicate balance where on one hand we want to spread results really fast as scientists, but on the other hand, we know it's incomplete, it's rushed and it's not great. This might be hard for the general audience to understand.
Ivan
I still think the benefits of that dissemination are more positive than negative.
Elisabeth
Right. But there's also so many papers that come out now on preprint servers and most of them are not that great, but there are some really good studies in there. It's hard to find those nuggets of really great papers. There's just a lot of papers that come out now.
Ivan
Well, you've made more than a habit of finding problems in papers. These are mostly, of course, until now published papers that you examined, but what is this time like for you? How is it different?
Elisabeth
It's different because in the beginning I looked at several COVID-19-related papers that came out and wrote some critiques about it. I did experience a lot of backlash because of that. So I felt I had to take a break from social media and from writing about COVID-19.
I focused a little bit more on other work because I just felt that a lot of these papers on COVID-19 became so politically divisive that if you tried to be a scientist and think critically about a paper, you were actually assigned to a particular political party or to be against other political parties. It's hard for me to be sucked into the political discussion and to the way that our society now is so completely divided into two camps that seem to be not listening to each other.
Ivan
I was curious about that because I've followed your work for a number of years, as you know, and certainly you have had critics before. I'm thinking of the case in China that you uncovered, the leading figure in the Chinese Academy who was really a powerful political figure in addition to being a scientist.
Elisabeth
So that was a case in which I found a couple of papers at first from a particular group in China, and I was just posting on a website called PubPeer, where you can post comments, concerns about papers. And in this case, these were image duplication issues, which is my specialty.
I did not realize that the group I was looking at at that moment was led by one of the highest ranked scientists in China. If I had known that, I would probably not have posted that under my full name, but under a pseudonym. Since I had already posted, some people were starting to send me direct messages on Twitter like, "OMG, the guy you're posting about now is the top scientist in China so you're going to have a lot of backlash."
Then I decided I'll just continue doing this. I found a total of around 50 papers from this group and posted all of them on PubPeer. That story quickly became a very popular story in China: number two on Sina Weibo, a social media site in China.
I was surprised it wasn't suppressed by the Chinese government, it was actually allowed by journalists that were writing about it, and I didn't experience a lot of backlash because of that.
Actually the Chinese doctor wrote me an email saying that he appreciated my feedback and that he would look into these cases. He sent a very polite email so I sent him back that I appreciated that he would look into these cases and left it there.
Ivan
There are certain subjects that I know when we write about them in Retraction Watch, they have tended in the past to really draw a lot of ire. I'm thinking anything about vaccines and autism, anything about climate change, stem cell research.
For a while that last subject has sort of died down. But now it's become a highly politically charged atmosphere. Do you feel that this pandemic has raised the profile of people such as yourself who we refer to as scientific sleuths, people who look critically and analytically at new research?
Elisabeth
Yeah, some people. But I'm also worried that some people who are great scientists and have shown a lot of critical thinking are being attacked because of that. If you just look at what happened to Dr. Fauci, I think that's a prime example. Where somebody who actually is very knowledgeable and very cautious of new science has not been widely accepted as a great leader, in our country at least. It's sad to see that. I'm just worried how long he will be at his position, to be honest.
Ivan
We noticed a big uptick in our traffic in the last few days to Retraction Watch and it turns out it was because someone we wrote about a number of years ago has really hopped on the bandwagon to try and discredit and even try to have Dr. Fauci fired.
It's one of these reminders that the way people think about scientists has, in many cases, far more to do with their own history or their own perspective going in than with any reality or anything about the science. It's pretty disturbing, but it's not a new thing. This has been happening for a while.
You can go back and read sociologists of science from 50-60 years ago and see the same thing, but I just don't think that it's in the same way that it is now, maybe in part because of social media.
Elisabeth
I've been personally very critical about several studies, but this is the first time I've experienced being attacked by trolls and having some nasty websites written about me. It is very disturbing to read.
"I don't think that something that's been peer-reviewed is perfect and something that hasn't been peer reviewed, you should never bother reading it."
Ivan
It is. Yet you have been a fearless and vocal critic of some very high-profile papers, like the infamous French study about hydroxychloroquine.
Elisabeth
Right, the paper that came out was immediately tweeted by the President of the United States. At first I thought it was great that our President tweeted about science! I thought that was a major breakthrough. I took a look at this paper.
It had just come out that day, I believe. The first thing I noticed is that it was accepted within 24 hours of being submitted to the journal. It was actually published in a journal where one of the authors is the editor-in-chief, which is a huge conflict of interest, but it happens.
But in this particular case, there were also a lot of flaws with the study and that, I think, should have been caught during peer review. The paper was first published on a preprint server and then within 24 hours or so it was published in that paper, supposedly after peer review.
There were very few changes between the preprint version and the peer review paper. There were just a couple of extra lines, extra sentences added here and there, but it wasn't really, I think, critically looked at. Because there were a lot of things that I thought were flaws.
Just to go over a couple of them. This paper showed supposedly that people who were treated with hydroxychloroquine and azithromycin were doing much better by clearing their virus much faster than people who were not treated with these drugs.
But if you look carefully at the paper there were a couple of people who were left out of the study. So they were treated with hydroxychloroquine, but they were not shown in the end results of the paper. All six people who were treated with the drug combination were clearing the virus within six days, but there were a couple of others who were left out of the study. They also started the drug combination, but they stopped taking the drugs for several reasons and three of them were admitted to the intensive care, one died, one had some side effects and one apparently walked out of the hospital.
They were left out of the study but they were actually not doing very well with the drug combination. It's not very good science if you leave out people who don't do very well with your drug combination in your study. That was one of my biggest critiques of the paper.
Ivan
What struck us about that case was, in addition to what you, of course, mentioned, the fact that Trump tweeted it and was talking about hydroxychloroquine, was that it seemed to be a perfect example of, "well, it was in a peer review journal." Yeah, it was a preprint first, but, well, it's a peer review journal. And yet, as you point out, when you look at the history of the paper, it was accepted in 24 hours.
If you talk to most scientists, the actual act of a peer review, once you sit down to do it and can concentrate, a good one takes, again, these are averages, but four hours, a half a day is not unreasonable. So you had to find three people who could suddenly review this paper. As you pointed out, it was in a journal where one of the authors was editor.
Then some strange things also happened, right? The society that actually publishes the journal, they came out with a statement saying this wasn't up to our standards, which is odd. Then Elsevier came in, they're the ones who are actually contracted to publish the journal for the society. They said, basically, "Oh, we're going to look into this now too."
It just makes you wonder what happened before the paper was actually published. All the people who were supposed to have been involved in doing the peer review or checking on it are clearly very distraught about what actually happened. It's that scene from Casablanca, "I'm shocked, shocked there's gambling going on here." And then, "Your winnings, sir."
Elisabeth
Yes.
Ivan
And I don't actually blame the public, I don't blame reporters for getting a bit confused about what it all means and what they should trust. I don't think trust is a binary any more than anything else is a binary. I don't think that something that's been peer-reviewed is perfect and something that hasn't been peer reviewed, you should never bother reading it. I think everything is much more gray.
Yet we've turned things into a binary. Even if you go back before coronavirus, coffee is good for you, coffee is bad for you, red wine, chocolate, all the rest of it. A lot of that is because of this sort of binary construct of the world for journalists, frankly, for scientists that need to get their next grants. And certainly for the general public, they want answers.
On the one hand, if I had to choose what group of experts, or what field of human endeavor would I trust with finding the answer to a pandemic like this, or to any crisis, it would absolutely be scientists. Hands down. This is coming from someone who writes about scientific fraud.
But on the other hand, that means that if scientists aren't clear about what they don't know and about the nuances and about what the scientific method actually allows us to do and learn, that just sets them up for failure. It sets people like Dr. Fauci up for failure.
Elisabeth
Right.
Ivan
It sets up any public health official who has a discussion about models. There's a famous saying: "All models are wrong, but some are useful."
Just because the projections change, it's not proof of wrongness, it's not proof that the model is fatally flawed. In fact, I'd be really concerned if the projections didn't change based on new information. I would love it if this whole episode did lead to a better understanding of the scientific process and how scientific publishing fits into that — and doesn't fit into it.
Elisabeth
Yes, I'm with you. I'm very worried that the general audience's perspective is based on maybe watching too many movies where the scientist comes up with a conclusion one hour into the movie when everything is about to fail. Like that scene in Contagion where somebody injects, I think, eight monkeys, and one of the monkeys survives and boom we have the vaccine. That's not really how science works. Everything takes many, many years and many, many applications where usually your first ideas and your first hypothesis turn out to be completely wrong.
Then you go back to the drawing board, you develop another hypothesis and this is a very reiterative process that usually takes years. Most of the people who watch the movie might have a very wrong idea and wrong expectations about how science works. We're living in the movie Contagion and by September, we'll all be vaccinated and we can go on and live our lives. But that's not what is going to happen. It's going to take much, much longer and we're going to have to change the models every time and change our expectations. Just because we don't know all the numbers and all the facts yet.
Ivan
Generally it takes a fairly long time to change medical practice. A lot of times people see that as a bad thing. What I think that ignores, or at least doesn't take into as much account as I would, is that you don't want doctors and other health care professionals to turn on a dime and suddenly switch. Unless, of course, it turns out there was no evidence for what you were looking at.
It's a complicated situation.
Everybody wants scientists to be engineers, right?
Elisabeth
Right.
Ivan
I'm not saying engineering isn't scientific, nor am I saying that science is just completely whimsical, but there's a different process. It's a different way of looking at things and you can't just throw all the data into a big supercomputer, which is what I think a lot of people seem to want us to do, and then the obvious answer will come out on the other side.
Elisabeth
No. It's true and a lot of engineers suddenly feel their inherent need to solve this as a problem. They're not scientists and it's not building a bridge over a big river. But we're dealing with something that is very hard to solve because we don't understand the problem yet. I think scientists are usually first analyzing the problem and trying to understand what the problem actually is before you can even think about a solution.
Ivan
I think we're still at the understanding the problem phase.
Elisabeth
Exactly. And going back to the French group paper, that promised such a result and that was interpreted as such by a lot of people including presidents, but it's a very rare thing to find a medication that will have a 100% curation rate. That's something that I wish the people would understand better. We all want that to happen, but it's very unlikely and very unprecedented in the best of times.
Ivan
I would second that and also say that the world needs to better value the work that people like Elisabeth and others are doing. Because we're not going to get to a better answer if we're not rigorous about scrutinizing the literature and scrutinizing the methodology and scrutinizing the results.
"I quit my job to be able to do this work."
It's a relatively new phenomenon that you're able to do this at any scale at all, and even now it's at a very small scale. Elisabeth mentioned PubPeer and I'm a big fan — also full disclosure, I'm on their board of directors as a volunteer — it's a very powerful engine for readers and journal editors and other scientists to discuss issues.
And Elisabeth has used it really, really well. I think we need to start giving credit to people like that. And, also creating incentives for that kind of work in a way that science hasn't yet.
Elisabeth
Yeah. I quit my job to be able to do this work. It's really hard to combine it with a job either in academia or industry because we're looking for or criticizing papers and it's hard when you are still employed to do that.
I try to make it about the papers and do it in a polite way, but still it's a very hard job to do if you have a daytime job and a position and a career to worry about. Because if you're critical of other academics, that could actually mean the end of your career and that's sad. They should be more open to polite criticism.
Ivan
And for the general public, if you're reading a newspaper story or something online about a single study and it doesn't mention any other studies that have said the same thing or similar, or frankly, if it doesn't say anything about any studies that contradicted it, that's probably also telling you something.
Say you're looking at a huge painting of a shoreline, a beach, and a forest. Any single study is just a one-centimeter-by-one-centimeter square of any part of that canvas. If you just look at that, you would either think it was a painting of the sea, of a beach, or of the forest. It's actually all three of those things.
We just need to be patient, and that's very challenging to us as human beings, but we need to take the time to look at the whole picture.
DISCLAIMER: Neither Elisabeth Bik nor Ivan Oransky was compensated for participation in The Pandemic Issue. While the magazine's editors suggested broad topics for discussion, consistent with Bik's and Oransky's work, neither they nor the magazine's underwriters had any influence on their conversation.
[Editor's Note: This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
A Fierce Mother vs. a Fatal Mutation
Editor's Note: In the year 2000, Amber Salzman was a 39-year-old mom from Philadelphia living a normal life: working as a pharmaceutical executive, raising an infant son, and enjoying time with her family. But when tragedy struck in the form of a ticking time bomb in her son's DNA, she sprang into action. Her staggering triumphs after years of turmoil exemplify how parents today can play a crucial role in pushing science forward. This is her family's story, as told to LeapsMag's Editor-in-Chief Kira Peikoff.
For a few years, my nephew Oliver, suffered from symptoms that first appeared as attention deficit disorder and then progressed to what seemed like Asperger's, and he continued to worsen and lose abilities he once had. After repeated misdiagnoses, he was finally diagnosed at age 8 with adrenoleukodystrophy, or ALD – a degenerative brain disease that puts kids on the path toward death. We learned it was an X-linked disease, so we had to test other family members. Because Oliver had it, that meant his mother, my sister, was carrier, which meant I had a 50-50 chance of being a carrier, and if I was, then my son had a 50-50 chance of getting the bad gene.
You know how some people win prizes all the time? I don't have that kind of luck. I had a sick feeling when we drew my son's blood. It was almost late December in the year 2000. Spencer was 1 and climbing around like a monkey, starting to talk—a very rambunctious kid. He tested positive, along with Oliver's younger brother, Elliott.
"The only treatment at the time was an allogenic stem cell transplant from cord blood or bone marrow."
You can imagine the dreadful things that go through your mind. Everything was fine then, but he had a horrific chance that in about 3 or 4 years, a bomb would go off. It was so tough thinking that we were going to lose Oliver, and then Spencer and Elliott were next in line. The only treatment at the time was an allogenic stem cell transplant from cord blood or bone marrow, which required finding a perfect match in a donor and then undergoing months of excruciating treatment. The mortality rate can be as high as 40 percent. If your kid was lucky enough to find a donor, he would then be lucky to leave the hospital 100 days after a transplant with a highly fragile immune system.
At the time, I was at GlaxoSmithKline in Research and Development, so I did have a background in working with drug development and I was fortunate to report to the chairman of R&D, Tachi Yamada.
I called Tachi and said, "I need your advice, I have three or four years to find a cure. What do I do?" He did some research and said it's a monogenic disease—meaning it's caused by only one errant gene—so my best bet was gene therapy. This is an approach to treatment that involves taking a sample of the patient's own stem cells, treating them outside the body with a viral vector as a kind of Trojan Horse to deliver the corrected gene, and then infusing the solution back into the patient, in the hopes that the good gene will proliferate throughout the body and stop the disease in its tracks.
Tachi said to call his friend Jim Wilson, who was a leader in the field at UPenn.
Since I live in Philadelphia I drove to see Jim as soon as possible. What I didn't realize was how difficult a time it was. This was shortly after Jesse Gelsinger died in a clinical trial for gene therapy run by UPenn—the first death for the field—and research had abruptly stopped. But when I met with Jim, he provided a road map for what it would take to put together a gene therapy trial for ALD.
Meanwhile, in parallel, I was dealing with my son's health.
After he was diagnosed, we arranged a brain MRI to see if he had any early lesions, because the only way you can stop the disease is if you provide a bone marrow transplant before the disease evolves. Once it is in full force, you can't reverse it, like a locomotive that's gone wild.
"He didn't recover like other kids because his brain was not a normal brain; it was an ALD brain."
We found he had a brain tumor that had nothing to do with ALD. It was slow growing, and we would have never found it otherwise until it was much bigger and caused symptoms. Long story short, he ended up getting the tumor removed, and when he was healing, he didn't recover like other kids because his brain was not a normal brain; it was an ALD brain. We knew we needed a transplant soon, and the gene therapy trial was unfortunately still years away.
At the time, he was my only child, and I was thinking of having additional kids. But I didn't want to get pregnant with another ALD kid and I wanted a kid who could provide a bone marrow transplant for my son. So while my son was still OK, I went through 5 cycles of in vitro fertilization, a process in which hormone shots stimulated my ovaries to produce multiple eggs, which were then surgically extracted and fertilized in a lab with my husband's sperm. After the embryos grew in a dish for three to five days, doctors used a technique called preimplantation genetic diagnosis, screening those embryos to determine which genes they carry, in order to try to find a match for Spencer. Any embryo that had ALD, we saved for research. Any that did not have ALD but were not a match for Spencer, we put in the freezer. We didn't end up with a single one that was a match.
So he had a transplant at Duke Children's Hospital at age 2, using cord blood donated from a public bank. He had to be in the hospital a long time, infusing meds multiple times a day to prevent the donor cells from rejecting his body. We were all excited when he made it out after 100 days, but then we quickly had to go back for an infection he caught.
We were still bent on moving forward with the gene therapy trials.
Jim Wilson at Penn explained what proof of concept we needed in animals to go forward to humans, and a neurologist in Paris, Patrick Aubourg, had already done that using a vector to treat ALD mice. But he wasn't sure which vector to use in humans.
The next step was to get Patrick and a team of gene therapy experts together to talk about what they knew, and what needed to be done to get a trial started. There was a lot of talk about viral vectors. Because viruses efficiently transport their own genomes into the cells they infect, they can be useful tools for sending good genes into faulty cells. With some sophisticated tinkering, molecular biologists can neuter normally dangerous viruses to make them into delivery trucks, nothing more. The biggest challenge we faced then was: How do we get a viral vector that would be safe in humans?
Jim introduced us to Inder Verma, chair of the scientific advisory board of Cell Genesys, a gene therapy company in California that was focused on oncology. They were the closest to making a viral vector that could go into humans, based on a disabled form of HIV. When I spoke to Inder, he said, "Let's review the data, but you will need to convince the company to give you the vector." So I called the CEO and basically asked him, "Would you be willing to use the vector in this horrific disease?" I told him that our trial would be the fastest way to test their vector in humans. He said, "If you can convince my scientists this is ready to go, we will put the vector forward." Mind you, this was a multi-million-dollar commitment, pro bono.
I kept thinking every day, the clock is ticking, we've got to move quickly. But we convinced the scientists and got the vector.
Then, before we could test it, an unrelated clinical trial in gene therapy for a severe immunodeficiency disease, led to several of the kids developing leukemia in 2003. The press did a bad number and scared everyone away from the field, and the FDA put studies on hold in the U.S. That was one of those moments where I thought it was over. But we couldn't let it stop. Nothing's an obstacle, just a little bump we have to overcome.
Patrick wanted to do the study in France with the vector. This is where patient advocacy is important in providing perspective on the risks vs. benefits of undergoing an experimental treatment. What nobody seemed to realize was that the kids in the 2003 trial would have died if they were not first given the gene therapy, and luckily their leukemia was a treatable side effect.
Patrick and I refused to give up pushing for approval of the trial in France. Meanwhile, I was still at GSK, working full time, and doing this at night, nonstop. Because my day job did require travel to Europe, I would stop by Paris and meet with him. Another sister of mine who did not have any affected children was a key help and we kept everything going. You really need to continually stay engaged and press the agenda forward, since there are so many things that pop up that can derail the program.
Finally, Patrick was able to treat four boys with the donated vector. The science paper came out in 2009. It was a big deal. That's when the venture money came in—Third Rock Ventures was the first firm to put big money behind gene therapy. They did a deal with Patrick to get access to the Intellectual Property to advance the trial, brought on scientists to continue the study, and made some improvements to the vector. That's what led to the new study reported recently in the New England Journal of Medicine. Of 17 patients, 15 of them are still fine at least two years after treatment.
You know how I said we felt thrilled that my son could leave the hospital after 100 days? When doing the gene therapy treatment, the hospital stay needed is much quicker. Shortly after one kid was treated, a physician in the hospital remarked, "He is fine, he's only here because of the trial." Since you get your own cells, there is no risk of graft vs. host disease. The treatment is pretty anticlimactic: a bag of blood, intravenously infused. You can bounce back within a few weeks.
Now, a few years out, approximately 20 percent of patients' cells have been corrected—and that's enough to hold off the disease. That's what the data is showing. I was blown away when it worked in the first two patients.
The formerly struggling field is now making a dramatic comeback.
Just last month, the first two treatments involving gene therapy were approved by the FDA to treat a devastating type of leukemia in children and an aggressive blood cancer in adults.
Now I run a company, Adverum Biotechnologies, that I wish existed back when my son was diagnosed, because I want people who are like me, coming to me, saying: "I have proof of concept in an animal, I need to get a vector suitable for human trials, do the work needed to file with the FDA, and move it into humans." Our company knows how to do that and would like to work with such patient advocates.
Often parents feel daunted to partake in similar efforts, telling me, "Well, you worked in pharma." Yes, I had advantages, but if you don't take no for an answer, people will help you. Everybody is one degree of separation from people who can help them. You don't need a science or business background. Just be motivated, ask for help, and have your heart in the right place.
Having said that, I don't want to sound judgmental of families who are completely paralyzed. When you get a diagnosis that your child is dying, it is hard to get out of bed in the morning and face life. My sister at a certain point had one child dying, one in the hospital getting a transplant, and a healthy younger child. To expect someone like that to at the same time be flying to an FDA meeting, it's hard. Yet, she made critical meetings, and she and her husband graciously made themselves available to talk to parents of recently diagnosed boys. But it is really tough and my heart goes out to anyone who has to live through such devastation.
Tragically, my nephew Oliver passed away 13 years ago at age 12. My other nephew was 8 when he had a cord blood transplant; our trial wasn't available yet. He had some bad graft vs. host disease and he is now navigating life using a wheelchair, but thank goodness, it stopped the disease. He graduated Stanford a year ago and is now a sports writer for the Houston Chronicle.
As for my son, today he is 17, a precocious teenager applying to colleges. He also volunteers for an organization called the Friendship Circle, providing friends for kids with special needs. He doesn't focus on disability and accepts people for who they are – maybe he would have been like that anyway, but it's part of who he is. He lost his cousin and knows he is alive today because Oliver's diagnosis gave us a head start on his.
My son's story is a good one in that he had a successful transplant and recovered.
Once we knew he would make it and we no longer needed our next child to be a match, we had a daughter using one of our healthy IVF embryos in storage. She is 14 now, but she jokes that she is technically 17, so she should get to drive. I tell her, they don't count the years in the freezer. You have to joke about it.
I am so lucky to have two healthy kids today based on advances in science.
And I often think of Oliver. We always try to make him proud and honor his name.
[Editor's Note: This story was originally published in November 2017. We are resurfacing archive hits while our staff is on vacation.]
Salzman and her son Spencer, 17, who is now healthy.
(Courtesy of Salzman)
So-Called “Puppy Mills” Are Not All As Bad As We Think, Pioneering Research Suggests
Candace Croney joined the faculty at Purdue University in 2011, thinking her job would focus on the welfare of livestock and poultry in Indiana. With bachelor's, master's, and doctoral degrees in animal sciences, her work until then had centered on sheep, cattle, and pigs. She'd even had the esteemed animal behaviorist Temple Grandin help shape her master's research project.
Croney's research has become the first of its kind in the world—and it's challenging our understanding of how dog breeding is being done.
Then came an email from a new colleague asking Croney to discuss animal welfare with some of Indiana's commercial dog breeders, the kind who produce large quantities of puppies for sale in pet stores.
"I didn't even know the term commercial breeders," Croney says. "I'd heard the term 'puppy millers.' That's pretty much what I knew."
She went to the first few kennels and braced herself for an upsetting experience. She's a dog lover who has fostered shelter mutts and owned one, and she'd seen the stories: large-scale breeders being called cruel and evil, lawmakers trying to ban the sale of commercially bred puppies, and constant encouragement to rescue a dog instead of paying into a greedy, heartless "puppy mill" industry.
But when she got to the kennels, she was surprised. While she encountered a number of things she didn't like about the infrastructure at the older facilities—a lack of ventilation, a lot of noise, bad smells—most of the dogs themselves were clean. The majority didn't have physical problems. No open sores. No battered bodies. Nothing like what she'd seen online.
But still, the way the dogs acted gave her pause.
"Things were, in many regards, better than I thought they would be," Croney says. "Google told me the dogs would be physically a mess, and they weren't, but behaviorally, things were jumping out at me."
While she did note that some of the breeders had play yards for their pups, a number of the dogs feared new people and things like leashes because they hadn't been exposed to enough of them. Some of the dogs also seemed to lack adequate toys, activities, and games to keep them mentally and physically stimulated.
But she was there strictly as a representative of the university to ask questions and offer feedback, no more or less. A few times, she says, she felt like the breeders wanted her to endorse what they were doing, "and I immediately got my back up about that. I did not want my name used to validate things that I could tell I didn't agree with. It was uncomfortable from that perspective."
After sharing the animal-welfare information her colleague had requested, Croney figured that was that. She never expected to be in a commercial kennel again. But six months later, her phone rang. Some of the people she'd met were involved in legislative lobbying, and they were trying to write welfare standards for Indiana's commercial breeders to follow.
In the continuing battle over what is, and is not, a "puppy mill," they wanted somebody with a strong research background to set a baseline standard, somebody who would actually bring objectivity to the breeder-activist conflict without being on one side or the other.
In other words, they wanted Croney's help to figure out not only appropriate enclosure sizes, but also requirements for socialization and enrichment activities—stimulation she knew the dogs desperately needed.
"I thought, crap, how am I not going to help?" she recalls. "And they said, 'Well how long will that take? A couple of weeks? A month?'"
Dr. Croney with Theo, whom she calls "a beloved family member of our research team."
(Photo credit: Purdue University/Vincent Walter)
Six years later, Croney's research remains ongoing. It has become the first of its kind in the world—and it's challenging our understanding of how dog breeding is being done, and how it could and should be done for years to come.
How We Got Here
Americans have been breeding pet dogs in large-scale kennels since World War II. The federal standard that regulates those kennels is the Animal Welfare Act, which President Johnson signed into law in 1966. Back then, people thought it was OK to treat dogs a lot differently than they do today. The law has been updated, but it still allows a dog the size of a Beagle to be kept in a cage the size of a dishwasher all day, every day because for some dogs, when the law was written, having a cage that size meant an improvement in living conditions.
Countless commercial breeders, who are regularly inspected under the Animal Welfare Act, have long believed that as long as they followed the law, they were doing things right. And they've seen sales for their puppies go up and up over the years. About 38 percent of U.S. households now own one or more dogs, the highest rate since the American Veterinary Medical Association began measuring the statistic in 1982.
Consumers now demand eight million dogs per year, which has reinforced breeders' beliefs that despite what activists shout at protests, the breeders are actually running businesses the public supports. As one Ohio commercial breeder—long decried by activists as a "puppy mill" owner—told The Washington Post in 2016, "This is a customer-driven industry. If we weren't satisfying the customer, we'd starve to death. I've never seen prices like the ones we're seeing now, in my whole career."
That breeder, though, is also among leading industry voices who say they understand that public perception of what's acceptable and what's not in a breeding kennel has changed. Regardless of what the laws are, they say, kennels must change along with the public's wishes if the commercial breeding industry is going to survive. The question is how, exactly, to move from the past to the future, at a time when demands for change have reached a fever pitch.
"The Animal Welfare Act, that was gospel. It meant you were taking care of dogs," says Bob Vetere, former head of the American Pet Products Association and now chairman of the Pet Leadership Council. "That was, what, 40 years ago? Things have evolved. People understand much more since then—and back then, there were maybe 20 million dogs in the country. Now, there's 90 million. It's that dramatic. People love their dogs, and everybody is going to get one."
Vetere became an early supporter of Croney's research, which, unbelievably, became the first ever to focus on what it actually means to run a good commercial breeding kennel. At the start of her research, Croney found that the scientific literature underpinning many existing laws and opinions was not just lacking, but outright nonexistent.
"We kept finding it over and over," she says of the literature gaps, citing common but uninformed beliefs about appropriate kennel size as just one example. "I can't find any research about how much space they're supposed to have. People said, 'Yeah, we had a meeting and a bunch of people made some recommendations.'"
She started filling in the research gaps with her team at Purdue, building relationships with dog breeders until she had more than 100 kennels letting her methodically figure out what was actually working for the dogs.
"The measurable successes in animal welfare over the past 50 years began from a foundation in science."
Creating Standards from Scratch
Other industry players soon took notice. One was Ed Sayres, who had served as CEO of the ASPCA for nearly a decade before turning his attention to lobbying efforts regarding the "puppy mill" issue. He recognized that what Croney was doing for commercial breeding mirrored the early work researchers started a half-century ago in the effort that led to better shelters all across America today.
"The measurable successes in animal welfare over the past 50 years began from a foundation in science," Sayres says. "Whether it was the transition to more humane euthanasia methods or how to manage dog and cat overpopulation, we found success from rigorous examination of facts and emerging science."
Sayres, Vetere, and others began pushing for the industry to support Croney's work, moving the goalposts beyond Indiana to the entire United States.
"If you don't have commercial breeding, you have people importing dogs from overseas with no restrictions, or farming in their backyards to make money," Vetere says. "You need commercial breeders with standards—and that's what Candace is trying to create, those standards."
Croney ended up with a $900,000 grant from three industry organizations: the World Pet Association, Pet Food Institute, and the Pet Industry Joint Advisory Council. With their support, she created a nationwide program called Canine Care Certified, like a Good Housekeeping Seal of Approval for a kennel. The program focuses on outcome-based standards, meaning she looks at what the dogs tell her about how well they are doing through their health and behavior. For the most part, beyond baseline requirements, the program lets a breeder achieve those goals in whatever ways work for the dogs.
The approach is different from many legislative efforts, with laws stating a cage must be made three feet larger to be considered humane. Instead, Croney walks through kennels with breeders and points out, for instance, which puppies in a litter seem to be shy or fearful, and then teaches the breeders how to give those puppies better socialization. She helps the breeders find ways to introduce dogs to strangers and objects like umbrellas that may not be part of regular kennel life, but will need to become familiar when the breeding dog retires and gets adopted into a home as a pet. She helps breeders understand that dogs need mental as well as physical stimulation, whether it comes from playing with balls and toys or running up and down slides.
The breeders can't learn fast enough, Croney says, and she remains stunned at how they constantly ask for more information—an attitude that made her stop using the term "puppy mill" to describe them at all.
"Now, full disclosure: Given that all of these kennels had volunteered, the odds were that we were seeing a skewed population, and that it skewed positive," she says. "But if you read what was in the media at the time, we shouldn't have been able to find any. We're told that all these kennels are terrible. Clearly, it was possible to get a positive outcome."
To Buy or Not to Buy?
Today, she says, she's shocked at how quickly some of the kennels have improved. Facilities that appalled her at first sight now have dogs greeting people with wagging tails.
"Not only would I get a dog from them, but would I put my dog there in that kennel temporarily? Yeah, I would."
"The most horrifying thing I learned was that some of these people weren't doing what I'd like to see, not because they didn't care or only wanted money, but because nobody had ever told them," she says. "As it turned out, they didn't know any different, and no one would help them."
For Americans who want to know whether it's OK to get a commercially bred puppy, Croney says she thinks about her own dogs. When she started working with the breeders, there were plenty of kennels that, she says, she would not have wanted to patronize. But now she's changing her mind about more and more of them.
"I'm just speaking as somebody who loves dogs and wants to make sure I'm not subsidizing anything inhumane or cruel," she says. "Not only would I get a dog from them, but would I put my dog there in that kennel temporarily? Yeah, I would."
She says the most important thing is for consumers to find out how a pup was raised, and how the pup's parents were raised. As with most industries, commercial breeders run the gamut, from barely legal to above and beyond.
Not everyone agrees with Croney's take on the situation, or with her approach to improving commercial breeding kennels. In its publication "Puppy Mills and the Animal Welfare Act," the Humane Society of the United States writes that while Croney's Canine Care Certified program supports "common areas of agreement" with animal-welfare lobbyists, her work has been funded by the pet industry—suggesting that it's impure—and a voluntary program is not enough to incentivize breeders to improve.
New laws, the Humane Society states, must be enacted to impose change: "Many commercial dog breeding operators will not raise their standards voluntarily, and even if they were to agree to do so it is not clear whether there would be any independent mechanism for enforcement or transparency for the public's sake. ... The logical conclusion is that improved standards must be codified."
Croney says that type of attitude has long created resentment between breeders and animal-welfare activists, as opposed to actual kennel improvements. Both sides have a point; for years, there have been examples of bottom-of-the-barrel kennels that changed their ways or shut down only after regulators smacked them with violations, or after lawmakers raised operating standards in ways that required improvements for the kennels to remain legally in business.
At the same time, though, powerful organizations including the Humane Society—which had revenue of more than $165 million in 2018 alone—have routinely pushed for bans on stores that sell commercially bred puppies, and have decried "puppy mills" in marketing and fund-raising literature, without offering financial grants or educational programs to kennels that are willing to improve.
Croney believes that the reflexive demonization of all commercial breeders is a mistake. Change is more effective, she says, when breeders "want to do better, want to learn, want to grow, and you treat them as advocates and allies in doing something good for animal welfare, as opposed to treating them like they're your enemies."
"If you're watching undercover videos about people treating animals in bad ways, I'm telling you, change is happening."
She adds that anyone who says all commercial breeders are "puppy mills" needs to take a look at the kennels she's seen and the changes her work has brought—and is continuing to bring.
"The ones we work with are working really, really hard to improve and open their doors so that if somebody wants to get a dog from them, they can be assured that those dogs were treated with a level of care and compassion that wasn't there five or 10 years ago, but that is there now and will be better in a year and will be much better in five years," she says. "If you're watching undercover videos about people treating animals in bad ways, I'm telling you, change is happening. It is so much better than people realize, and it continues to get even better yet."