The Science Sleuth Holding Fraudulent Research Accountable
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Introduction by Mary Inman, Whistleblower Attorney
For most people, when they see the word "whistleblower," the image that leaps to mind is a lone individual bravely stepping forward to shine a light on misconduct she has witnessed first-hand. Meryl Streep as Karen Silkwood exposing safety violations observed while working the line at the Kerr-McGee plutonium plant. Matt Damon as Mark Whitacre in The Informant!, capturing on his pocket recorder clandestine meetings between his employer and its competitors to fix the price of lysine. However, a new breed of whistleblower is emerging who isn't at the scene of the crime but instead figures it out after the fact through laborious review of publicly available information and expert analysis. Elisabeth Bik belongs to this new class of whistleblower.
"There's this delicate balance where on one hand we want to spread results really fast as scientists, but on the other hand, we know it's incomplete, it's rushed and it's not great."
Using her expertise as a microbiologist and her trained eye, Bik studies publicly available scientific papers to sniff out potential irregularities in the images that suggest research fraud, later seeking retraction of the offending paper from the journal's publisher. There's no smoking gun, no first-hand account of any kind. Just countless hours spent reviewing scores of scientific papers and Bik's skills and dedication as a science fraud sleuth.
While Bik's story may not as readily lend itself to the big screen, her work is nonetheless equally heroic. By tirelessly combing scientific papers to expose research fraud, Bik is playing a vital role in holding the scientific publishing process accountable and ensuring that misleading information does not spread unchecked. This is important work in any age, but particularly so in the time of COVID, where we can ill afford the setbacks and delays of scientists building on false science. In the present climate, where science is politicized and scientific principles are under attack, strong voices like Bik's must rise above the din to ensure the scientific information we receive, and our governments act upon, is accurate. Our health and wellbeing depend on it.
Whistleblower outsiders like Bik are challenging the traditional concept of what it means to be a whistleblower. Fortunately for us, the whistleblower community is a broad church. As with most ecosystems, we all benefit from a diversity of voices —whistleblower insiders and outsiders alike. What follows is an illuminating conversation between Bik, and Ivan Oransky, the co-founder of Retraction Watch, an influential blog that reports on retractions of scientific papers and related topics. (Conversation facilitated by LeapsMag Editor-in-Chief Kira Peikoff)
Elisabeth Bik and Ivan Oransky.
(Photo credits Michel & Co Photography, San Jose, CA and Elizabeth Solaka)
Ivan
I'd like to hear your thoughts, Elisabeth, on an L.A. Times story, which was picking up a preprint about mutations and the novel coronavirus, alleging that the virus is mutating to become more infectious – even though this conclusion wasn't actually warranted.
Elisabeth
A lot of the news around it is picking up on one particular side of the story that is maybe not that much exaggerated by the scientists. I don't think this paper really showed that the mutations were causing the virus to be more virulent. Some of these viruses continuously mutate and mutate and mutate, and that doesn't necessarily make a strain more virulent. I think in many cases, a lot of people want to read something in a paper that is not actually there.
Ivan
The tone level, everything that's being published now, it's problematic. It's being rushed, here it wasn't even peer-reviewed. But even when they are peer-reviewed, they're being peer-reviewed by people who often aren't really an expert in that particular area.
Elisabeth
That's right.
Ivan
To me, it's all problematic. At the same time, it's all really good that it's all getting out there. I think that five or 10 years ago, or if we weren't in a pandemic, maybe that paper wouldn't have appeared at all. It would have maybe been submitted to a top-ranked journal and not have been accepted, or maybe it would have been improved during peer review and bounced down the ladder a bit to a lower-level journal.
Yet, now, because it's about coronavirus, it's in a major newspaper and, in fact, it's getting critiqued immediately.
Maybe it's too Pollyanna-ish, but I actually think that quick uploading is a good thing. The fear people have about preprint servers is based on this idea that the peer-reviewed literature is perfect. Once it is in a peer-reviewed journal, they think it must have gone through this incredible process. You're laughing because-
Elisabeth
I am laughing.
Ivan
You know it's not true.
Elisabeth
Yes, we both know that. I agree and I think in this particular situation, a pandemic that is unlike something our generation has seen before, there is a great, great need for fast dissemination of science.
If you have new findings, it is great that there is a thing called a preprint server where scientists can quickly share their results, with, of course, the caveat that it's not peer-reviewed yet.
It's unlike the traditional way of publishing papers, which can take months or years. Preprint publishing is a very fast way of spreading your results in a good way so that is what the world needs right now.
On the other hand, of course, there's the caveat that these are brand new results and a good scientist usually thinks about their results to really interpret it well. You have to look at it from all sides and I think with the rushed publication of preprint papers, there is no such thing as carefully thinking about what results might mean.
So there's this delicate balance where on one hand we want to spread results really fast as scientists, but on the other hand, we know it's incomplete, it's rushed and it's not great. This might be hard for the general audience to understand.
Ivan
I still think the benefits of that dissemination are more positive than negative.
Elisabeth
Right. But there's also so many papers that come out now on preprint servers and most of them are not that great, but there are some really good studies in there. It's hard to find those nuggets of really great papers. There's just a lot of papers that come out now.
Ivan
Well, you've made more than a habit of finding problems in papers. These are mostly, of course, until now published papers that you examined, but what is this time like for you? How is it different?
Elisabeth
It's different because in the beginning I looked at several COVID-19-related papers that came out and wrote some critiques about it. I did experience a lot of backlash because of that. So I felt I had to take a break from social media and from writing about COVID-19.
I focused a little bit more on other work because I just felt that a lot of these papers on COVID-19 became so politically divisive that if you tried to be a scientist and think critically about a paper, you were actually assigned to a particular political party or to be against other political parties. It's hard for me to be sucked into the political discussion and to the way that our society now is so completely divided into two camps that seem to be not listening to each other.
Ivan
I was curious about that because I've followed your work for a number of years, as you know, and certainly you have had critics before. I'm thinking of the case in China that you uncovered, the leading figure in the Chinese Academy who was really a powerful political figure in addition to being a scientist.
Elisabeth
So that was a case in which I found a couple of papers at first from a particular group in China, and I was just posting on a website called PubPeer, where you can post comments, concerns about papers. And in this case, these were image duplication issues, which is my specialty.
I did not realize that the group I was looking at at that moment was led by one of the highest ranked scientists in China. If I had known that, I would probably not have posted that under my full name, but under a pseudonym. Since I had already posted, some people were starting to send me direct messages on Twitter like, "OMG, the guy you're posting about now is the top scientist in China so you're going to have a lot of backlash."
Then I decided I'll just continue doing this. I found a total of around 50 papers from this group and posted all of them on PubPeer. That story quickly became a very popular story in China: number two on Sina Weibo, a social media site in China.
I was surprised it wasn't suppressed by the Chinese government, it was actually allowed by journalists that were writing about it, and I didn't experience a lot of backlash because of that.
Actually the Chinese doctor wrote me an email saying that he appreciated my feedback and that he would look into these cases. He sent a very polite email so I sent him back that I appreciated that he would look into these cases and left it there.
Ivan
There are certain subjects that I know when we write about them in Retraction Watch, they have tended in the past to really draw a lot of ire. I'm thinking anything about vaccines and autism, anything about climate change, stem cell research.
For a while that last subject has sort of died down. But now it's become a highly politically charged atmosphere. Do you feel that this pandemic has raised the profile of people such as yourself who we refer to as scientific sleuths, people who look critically and analytically at new research?
Elisabeth
Yeah, some people. But I'm also worried that some people who are great scientists and have shown a lot of critical thinking are being attacked because of that. If you just look at what happened to Dr. Fauci, I think that's a prime example. Where somebody who actually is very knowledgeable and very cautious of new science has not been widely accepted as a great leader, in our country at least. It's sad to see that. I'm just worried how long he will be at his position, to be honest.
Ivan
We noticed a big uptick in our traffic in the last few days to Retraction Watch and it turns out it was because someone we wrote about a number of years ago has really hopped on the bandwagon to try and discredit and even try to have Dr. Fauci fired.
It's one of these reminders that the way people think about scientists has, in many cases, far more to do with their own history or their own perspective going in than with any reality or anything about the science. It's pretty disturbing, but it's not a new thing. This has been happening for a while.
You can go back and read sociologists of science from 50-60 years ago and see the same thing, but I just don't think that it's in the same way that it is now, maybe in part because of social media.
Elisabeth
I've been personally very critical about several studies, but this is the first time I've experienced being attacked by trolls and having some nasty websites written about me. It is very disturbing to read.
"I don't think that something that's been peer-reviewed is perfect and something that hasn't been peer reviewed, you should never bother reading it."
Ivan
It is. Yet you have been a fearless and vocal critic of some very high-profile papers, like the infamous French study about hydroxychloroquine.
Elisabeth
Right, the paper that came out was immediately tweeted by the President of the United States. At first I thought it was great that our President tweeted about science! I thought that was a major breakthrough. I took a look at this paper.
It had just come out that day, I believe. The first thing I noticed is that it was accepted within 24 hours of being submitted to the journal. It was actually published in a journal where one of the authors is the editor-in-chief, which is a huge conflict of interest, but it happens.
But in this particular case, there were also a lot of flaws with the study and that, I think, should have been caught during peer review. The paper was first published on a preprint server and then within 24 hours or so it was published in that paper, supposedly after peer review.
There were very few changes between the preprint version and the peer review paper. There were just a couple of extra lines, extra sentences added here and there, but it wasn't really, I think, critically looked at. Because there were a lot of things that I thought were flaws.
Just to go over a couple of them. This paper showed supposedly that people who were treated with hydroxychloroquine and azithromycin were doing much better by clearing their virus much faster than people who were not treated with these drugs.
But if you look carefully at the paper there were a couple of people who were left out of the study. So they were treated with hydroxychloroquine, but they were not shown in the end results of the paper. All six people who were treated with the drug combination were clearing the virus within six days, but there were a couple of others who were left out of the study. They also started the drug combination, but they stopped taking the drugs for several reasons and three of them were admitted to the intensive care, one died, one had some side effects and one apparently walked out of the hospital.
They were left out of the study but they were actually not doing very well with the drug combination. It's not very good science if you leave out people who don't do very well with your drug combination in your study. That was one of my biggest critiques of the paper.
Ivan
What struck us about that case was, in addition to what you, of course, mentioned, the fact that Trump tweeted it and was talking about hydroxychloroquine, was that it seemed to be a perfect example of, "well, it was in a peer review journal." Yeah, it was a preprint first, but, well, it's a peer review journal. And yet, as you point out, when you look at the history of the paper, it was accepted in 24 hours.
If you talk to most scientists, the actual act of a peer review, once you sit down to do it and can concentrate, a good one takes, again, these are averages, but four hours, a half a day is not unreasonable. So you had to find three people who could suddenly review this paper. As you pointed out, it was in a journal where one of the authors was editor.
Then some strange things also happened, right? The society that actually publishes the journal, they came out with a statement saying this wasn't up to our standards, which is odd. Then Elsevier came in, they're the ones who are actually contracted to publish the journal for the society. They said, basically, "Oh, we're going to look into this now too."
It just makes you wonder what happened before the paper was actually published. All the people who were supposed to have been involved in doing the peer review or checking on it are clearly very distraught about what actually happened. It's that scene from Casablanca, "I'm shocked, shocked there's gambling going on here." And then, "Your winnings, sir."
Elisabeth
Yes.
Ivan
And I don't actually blame the public, I don't blame reporters for getting a bit confused about what it all means and what they should trust. I don't think trust is a binary any more than anything else is a binary. I don't think that something that's been peer-reviewed is perfect and something that hasn't been peer reviewed, you should never bother reading it. I think everything is much more gray.
Yet we've turned things into a binary. Even if you go back before coronavirus, coffee is good for you, coffee is bad for you, red wine, chocolate, all the rest of it. A lot of that is because of this sort of binary construct of the world for journalists, frankly, for scientists that need to get their next grants. And certainly for the general public, they want answers.
On the one hand, if I had to choose what group of experts, or what field of human endeavor would I trust with finding the answer to a pandemic like this, or to any crisis, it would absolutely be scientists. Hands down. This is coming from someone who writes about scientific fraud.
But on the other hand, that means that if scientists aren't clear about what they don't know and about the nuances and about what the scientific method actually allows us to do and learn, that just sets them up for failure. It sets people like Dr. Fauci up for failure.
Elisabeth
Right.
Ivan
It sets up any public health official who has a discussion about models. There's a famous saying: "All models are wrong, but some are useful."
Just because the projections change, it's not proof of wrongness, it's not proof that the model is fatally flawed. In fact, I'd be really concerned if the projections didn't change based on new information. I would love it if this whole episode did lead to a better understanding of the scientific process and how scientific publishing fits into that — and doesn't fit into it.
Elisabeth
Yes, I'm with you. I'm very worried that the general audience's perspective is based on maybe watching too many movies where the scientist comes up with a conclusion one hour into the movie when everything is about to fail. Like that scene in Contagion where somebody injects, I think, eight monkeys, and one of the monkeys survives and boom we have the vaccine. That's not really how science works. Everything takes many, many years and many, many applications where usually your first ideas and your first hypothesis turn out to be completely wrong.
Then you go back to the drawing board, you develop another hypothesis and this is a very reiterative process that usually takes years. Most of the people who watch the movie might have a very wrong idea and wrong expectations about how science works. We're living in the movie Contagion and by September, we'll all be vaccinated and we can go on and live our lives. But that's not what is going to happen. It's going to take much, much longer and we're going to have to change the models every time and change our expectations. Just because we don't know all the numbers and all the facts yet.
Ivan
Generally it takes a fairly long time to change medical practice. A lot of times people see that as a bad thing. What I think that ignores, or at least doesn't take into as much account as I would, is that you don't want doctors and other health care professionals to turn on a dime and suddenly switch. Unless, of course, it turns out there was no evidence for what you were looking at.
It's a complicated situation.
Everybody wants scientists to be engineers, right?
Elisabeth
Right.
Ivan
I'm not saying engineering isn't scientific, nor am I saying that science is just completely whimsical, but there's a different process. It's a different way of looking at things and you can't just throw all the data into a big supercomputer, which is what I think a lot of people seem to want us to do, and then the obvious answer will come out on the other side.
Elisabeth
No. It's true and a lot of engineers suddenly feel their inherent need to solve this as a problem. They're not scientists and it's not building a bridge over a big river. But we're dealing with something that is very hard to solve because we don't understand the problem yet. I think scientists are usually first analyzing the problem and trying to understand what the problem actually is before you can even think about a solution.
Ivan
I think we're still at the understanding the problem phase.
Elisabeth
Exactly. And going back to the French group paper, that promised such a result and that was interpreted as such by a lot of people including presidents, but it's a very rare thing to find a medication that will have a 100% curation rate. That's something that I wish the people would understand better. We all want that to happen, but it's very unlikely and very unprecedented in the best of times.
Ivan
I would second that and also say that the world needs to better value the work that people like Elisabeth and others are doing. Because we're not going to get to a better answer if we're not rigorous about scrutinizing the literature and scrutinizing the methodology and scrutinizing the results.
"I quit my job to be able to do this work."
It's a relatively new phenomenon that you're able to do this at any scale at all, and even now it's at a very small scale. Elisabeth mentioned PubPeer and I'm a big fan — also full disclosure, I'm on their board of directors as a volunteer — it's a very powerful engine for readers and journal editors and other scientists to discuss issues.
And Elisabeth has used it really, really well. I think we need to start giving credit to people like that. And, also creating incentives for that kind of work in a way that science hasn't yet.
Elisabeth
Yeah. I quit my job to be able to do this work. It's really hard to combine it with a job either in academia or industry because we're looking for or criticizing papers and it's hard when you are still employed to do that.
I try to make it about the papers and do it in a polite way, but still it's a very hard job to do if you have a daytime job and a position and a career to worry about. Because if you're critical of other academics, that could actually mean the end of your career and that's sad. They should be more open to polite criticism.
Ivan
And for the general public, if you're reading a newspaper story or something online about a single study and it doesn't mention any other studies that have said the same thing or similar, or frankly, if it doesn't say anything about any studies that contradicted it, that's probably also telling you something.
Say you're looking at a huge painting of a shoreline, a beach, and a forest. Any single study is just a one-centimeter-by-one-centimeter square of any part of that canvas. If you just look at that, you would either think it was a painting of the sea, of a beach, or of the forest. It's actually all three of those things.
We just need to be patient, and that's very challenging to us as human beings, but we need to take the time to look at the whole picture.
DISCLAIMER: Neither Elisabeth Bik nor Ivan Oransky was compensated for participation in The Pandemic Issue. While the magazine's editors suggested broad topics for discussion, consistent with Bik's and Oransky's work, neither they nor the magazine's underwriters had any influence on their conversation.
[Editor's Note: This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
The news last November that a rogue Chinese scientist had genetically altered the embryos of a pair of Chinese twins shocked the world. But although this use of advanced technology to change the human gene pool was premature, it was a harbinger of how genetic science will alter our healthcare, the way we make babies, the nature of the babies we make, and, ultimately, our sense of who and what we are as a species.
The healthcare applications of the genetics revolution are merely stations along the way to the ultimate destination.
But while the genetics revolution has already begun, we aren't prepared to handle these Promethean technologies responsibly.
By identifying the structure of DNA in the 1950s, Watson, Crick, Wilkins, and Franklin showed that the book of life was written in the DNA double helix. When the human genome project was completed in 2003, we saw how this book of human life could be transcribed. Painstaking research paired with advanced computational algorithms then showed what increasing numbers of genes do and how the genetic book of life can be read.
Now, with the advent of precision gene editing tools like CRISPR, we are seeing that the book of life -- and all biology -- can be re-written. Biology is being recognized as another form of readable, writable, and hackable information technology with we humans as the coders.
The impact of this transformation is being first experienced in our healthcare. Gene therapies including those extracting, re-engineering, then reintroducing a person's own cells enhanced into cancer-fighting supercells are already performing miracles in clinical trials. Thousands of applications have already been submitted to regulators across the globe for trials using gene therapies to address a host of other diseases.
Recently, the first gene editing of cells inside a person's body was deployed to treat the genetically relatively simple metabolic disorder Hunter syndrome, with many more applications to come. These new approaches are only the very first steps in our shift from the current system of generalized medicine based on population averages to precision medicine based on each patient's individual biology to predictive medicine based on AI-generated estimations of a person's future health state.
Jamie Metzl's groundbreaking new book, Hacking Darwin: Genetic Engineering and the Future of Humanity, explores how the genetic revolution is transforming our healthcare, the way we make babies, and the nature of and babies we make, what this means for each of us, and what we must all do now to prepare for what's coming.
This shift in our healthcare will ensure that millions and then billions of people will have their genomes sequenced as the foundation of their treatment. Big data analytics will then be used to compare at scale people's genotypes (what their genes say) to their phenotypes (how those genes are expressed over the course of their lives).
These massive datasets of genetic and life information will then make it possible to go far beyond the simple genetic analysis of today and to understand far more complex human diseases and traits influenced by hundreds or thousands of genes. Our understanding of this complex genetic system within the vaster ecosystem of our bodies and the environment around us will transform healthcare for the better and help us cure terrible diseases that have plagued our ancestors for millennia.
But as revolutionary as this challenge will be for medicine, the healthcare applications of the genetics revolution are merely stations along the way to the ultimate destination – a deep and fundamental transformation of our evolutionary trajectory as a species.
A first inkling of where we are heading can be seen in the direct-to-consumer genetic testing industry. Many people around the world have now sent their cheek swabs to companies like 23andMe for analysis. The information that comes back can tell people a lot about relatively simple genetic traits like carrier status for single gene mutation diseases, eye color, or whether they hate the taste of cilantro, but the information about complex traits like athletic predisposition, intelligence, or personality style today being shared by some of these companies is wildly misleading.
This will not always be the case. As the genetic and health data pools grow, analysis of large numbers of sequenced genomes will make it possible to apply big data analytics to predict some very complex genetic disease risks and the genetic components of traits like height, IQ, temperament, and personality style with increasing accuracy. This process, called "polygenic scoring," is already being offered in beta stage by a few companies and will become an ever bigger part of our lives going forward.
The most profound application of all this will be in our baby-making. Before making a decision about which of the fertilized eggs to implant, women undergoing in vitro fertilization can today elect to have a small number of cells extracted from their pre-implanted embryos and sequenced. With current technology, this can be used to screen for single-gene mutation diseases and other relatively simple disorders. Polygenic scoring, however, will soon make it possible to screen these early stage pre-implanted embryos to assess their risk of complex genetic diseases and even to make predictions about the heritable parts of complex human traits. The most intimate elements of being human will start feeling like high-pressure choices needing to be made by parents.
The limit of our imagination will become the most significant barrier to our recasting biology.
Adult stem cell technologies will then likely make it possible to generate hundreds or thousands of a woman's own eggs from her blood sample or skin graft. This would blow open the doors of reproductive possibility and allow parents to choose embryos with exceptional potential capabilities from a much larger set of options.
The complexity of human biology will place some limits to the extent of possible gene edits that might be made to these embryos, but all of biology, including our own, is extremely flexible. How else could all the diversity of life have emerged from a single cell nearly four billion years ago? The limit of our imagination will become the most significant barrier to our recasting biology.
But while we humans are gaining the powers of the gods, we aren't at all ready to use them.
The same tools that will help cure our worst afflictions, save our children, help us live longer, healthier, more robust lives will also open the door to potential abuses. Prospective parents with the best of intentions or governments with lax regulatory structures or aggressive ideas of how population-wide genetic engineering might be used to enhance national competitiveness or achieve some other goal could propel us into a genetic arms race that could undermine our essential diversity, dangerously divide societies, lead to dangerous, destabilizing, and potentially even deadly conflicts between us, and threaten our very humanity.
But while the advance of genetic technologies is inevitable, how it plays out is anything but. If we don't want the genetic revolution to undermine our species or lead to grave conflicts between genetic haves and have nots or between societies opting in and those opting out, now is the time when we need to make smart decisions based on our individual and collective best values. Although the technology driving the genetic revolution is new, the value systems we will need to optimize the benefits and minimize the harms of this massive transformation are ones we have been developing for thousands of years.
And while some very smart and well-intentioned scientists have been meeting to explore what comes next, it won't be enough for a few of even our wisest prophets to make decisions about the future of our species that will impact everyone. We'll also need smart regulations on both the national and international levels.
Every country will need to have its own regulatory guidelines for human genetic engineering based on both international best practices and the country's unique traditions and values. Because we are all one species, however, we will also ultimately need to develop guidelines that can apply to all of us.
As a first step toward making this possible, we must urgently launch a global, species-wide education effort and inclusive dialogue on the future of human genetic engineering that can eventually inform global norms that will need to underpin international regulations. This process will not be easy, but the alternative of an unregulated genetic arms race would be far worse.
The overlapping genomics and AI revolutions may seem like distant science fiction but are closer than you think. Far sooner than most people recognize, the inherent benefits of these technologies and competition between us will spark rapid adoption. Before that spark ignites, we have a brief moment to come together as a species like we never have before to articulate and translate into action the future we jointly envision. The north star of our best shared values can help us navigate the almost unimaginable opportunities and very real challenges that lie ahead.
Here's something to chew on. Can a gulp of water help save the planet? If you're drinking *and* eating your water at the same time, the answer may be yes.
The tasteless packaging is made from brown seaweed that biodegrades naturally in four to six weeks.
The Lowdown
A start-up company called Skipping Rocks Lab has created a "water bubble" encased in an edible sachet that you can pop in your mouth whole. Or if you're not into swallowing it, you can tear off the edge, drink up, and toss the rest in a composter. The tasteless packaging is made from brown seaweed that biodegrades naturally in four to six weeks, whereas plastic water bottles can linger for hundreds of years.
The founders of the London-based company are determined to "make plastic packaging disappear." They had two foodie inspirations: molecular gastronomists and fruit. They tried to emulate the way chefs used edible membranes to encase bubbles of liquid to make things like fake caviar and fake egg yolks; and they also considered the peel of an orange or banana, which protects the tasty insides but can be composted.
The sachets can also contain other liquids that come in single-serve plastic containers -- think packets of condiments with takeout meals, specialty cocktails at parties, and especially single servings of water for sporting events. The London Marathon last month gave out the water bubble pods at a station along the route, using them to replace 200,000 plastic bottles that would have likely ended up first in the street, and ultimately in the ocean.
Next Up
The engineers and chemists at Skipping Rocks intend to lease their machines to others who can then manufacture their own sachets on-site to fill with whatever they desire. The new material, which is dubbed "Notpla" (not plastic), also has other applications beyond holding liquids. It can be used to replace the plastic lining in cardboard takeout boxes, for example. And the startup is working on additional materials to replace other types of ubiquitous plastic packaging, like the netting that encases garlic and onions, and the sachets that hold nails and screws.
Edible water bubbles may be the future of drinks at sporting events and festivals.
Open Questions
One hurdle is that the pods are not very hardy, so while they work fine to hand out along a marathon route, they wouldn't really be viable for a hiker to throw in her backpack. Another issue concerns the retail market: to be stable on a shelf, they'd have to be protected from all that handling, which brings us back to the problem the engineers tried to solve in the first place -- disposable packaging.
So while Skipping Rocks may not achieve their ultimate goal of ridding the world of plastic waste, a little progress can still go a long way. If edible water bubbles are the future of drinks at sporting events and festivals, the environment will certainly benefit from their presence -- and absence.