The Sickest Babies Are Covered in Wires. New Tech Is Changing That.
I'll never forget the experience of having a child in the neonatal intensive care unit (NICU).
Now more than ever, we're working to remove the barriers between new parents and their infants.
It was another layer of uncertainty that filtered into my experience of being a first-time parent. There was so much I didn't know, and the wires attached to my son's small body for the first week of his life were a reminder of that.
I wanted to be the best mother possible. I deeply desired to bring my son home to start our lives. More than anything, I longed for a wireless baby whom I could hold and love freely without limitations.
The wires suggested my baby was fragile and it left me feeling severely unprepared, anxious, and depressed.
In recent years, research has documented the ways that NICU experiences take a toll on parents' mental health. But thankfully, medical technology is rapidly being developed to help reduce the emotional fallout of the NICU. Now more than ever, we're working to remove the barriers between new parents and their infants. The latest example is the first ever wireless monitoring system that was recently developed by a team at Northwestern University.
After listening to the needs of parents and medical staff, Debra Weese-Mayer, M.D., a professor of pediatric autonomic medicine at Feinberg School of Medicine, along with a team of materials scientists, engineers, dermatologists and pediatricians, set out to develop this potentially life-changing technology. Weese-Mayer believes wireless monitoring will have a significant impact for people on all sides of the NICU experience.
"With elimination of the cumbersome wires," she says, "the parents will find their infant more approachable/less intimidating and have improved access to their long-awaited but delivered-too-early infant, allowing them to begin skin-to-skin contact and holding with reduced concern for dislodging wires."
So how does the new system work?
Very thin "skin like" patches made of silicon rubber are placed on the surface of the skin to monitor vitals like heart rate, respiration rate, and body temperature. One patch is placed on the chest or back and the other is placed on the foot.
These patches are safer on the skin than previously used adhesives, reducing the cuts and infections associated with past methods. Finally, an antenna continuously delivers power, often from under the mattress.
The data collected from the patches stream from the body to a tablet or computer.
New wireless sensor technology is being studied to replace wired monitoring in NICUs in the coming years.
(Northwestern University)
Weese-Mayer hopes that wireless systems will be standard soon, but first they must undergo more thorough testing. "I would hope that in the next five years, wireless monitoring will be the standard in NICUs, but there are many essential validation steps before this technology will be embraced nationally," she says.
Until the new systems are ready, parents will be left struggling with the obstacles that wired monitoring presents.
Physical intimacy, for example, appears to have pain-reducing qualities -- something that is particularly important for babies who are battling serious illness. But wires make those cuddles more challenging.
There's also been minimal discussion about how wired monitoring can be particularly limiting for parents with disabilities and mobility aids, or even C-sections.
"When he was first born and I was recovering from my c-section, I couldn't deal with keeping the wires untangled while trying to sit down without hurting myself," says Rhiannon Giles, a writer from North Carolina, who delivered her son at just over 31 weeks after suffering from severe preeclampsia.
"The wires were awful," she remembers. "They fell off constantly when I shifted positions or he kicked a leg, which meant the monitors would alarm. It felt like an intrusion into the quiet little world I was trying to mentally create for us."
Over the last few years, researchers have begun to dive deeper into the literal and metaphorical challenges of wired monitoring.
For many parents, the wires prompt anxiety that worsens an already tense and vulnerable time.
I'll never forget the first time I got to hold my son without wires. It was the first time that motherhood felt manageable.
"Seeing my five-pound-babies covered in wires from head to toe rendered me completely overwhelmed," recalls Caila Smith, a mom of five from Indiana, whose NICU experience began when her twins were born pre-term. "The nurses seemed to handle them perfectly, but I was scared to touch them while they appeared so medically frail."
During the nine days it took for both twins to come home, the limited access she had to her babies started to impact her mental health. "If we would've had wireless sensors and monitors, it would've given us a much greater sense of freedom and confidence when snuggling our newborns," Smith says.
Besides enabling more natural interactions, wireless monitoring would make basic caregiving tasks much easier, like putting on a onesie.
"One thing I noticed is that many preemie outfits are made with zippers," points out Giles, "which just don't work well when your baby has wires coming off of them, head to toe."
Wired systems can pose issues for medical staff as well as parents.
"The main concern regarding wired systems is that they restrict access to the baby and often get tangled with other equipment, like IV lines," says Lamia Soghier, Medical Director of the Neonatal Intensive Care Unit at Children's National in Washington, D.C , who was also a NICU parent herself. "The nurses have to untangle the wires, which takes time, before handing the baby to the family."
I'll never forget the first time I got to hold my son without wires. It was the first time that motherhood felt manageable, and I couldn't stop myself from crying. Suddenly, anything felt possible and all the limitations from that first week of life seemed to fade away. The rise of wired-free monitoring will make some of the stressors that accompany NICU stays a thing of the past.
In The Fake News Era, Are We Too Gullible? No, Says Cognitive Scientist
One of the oddest political hoaxes of recent times was Pizzagate, in which conspiracy theorists claimed that Hillary Clinton and her 2016 campaign chief ran a child sex ring from the basement of a Washington, DC, pizzeria.
To fight disinformation more effectively, he suggests, humans need to stop believing in one thing above all: our own gullibility.
Millions of believers spread the rumor on social media, abetted by Russian bots; one outraged netizen stormed the restaurant with an assault rifle and shot open what he took to be the dungeon door. (It actually led to a computer closet.) Pundits cited the imbroglio as evidence that Americans had lost the ability to tell fake news from the real thing, putting our democracy in peril.
Such fears, however, are nothing new. "For most of history, the concept of widespread credulity has been fundamental to our understanding of society," observes Hugo Mercier in Not Born Yesterday: The Science of Who We Trust and What We Believe (Princeton University Press, 2020). In the fourth century BCE, he points out, the historian Thucydides blamed Athens' defeat by Sparta on a demagogue who hoodwinked the public into supporting idiotic military strategies; Plato extended that argument to condemn democracy itself. Today, atheists and fundamentalists decry one another's gullibility, as do climate-change accepters and deniers. Leftists bemoan the masses' blind acceptance of the "dominant ideology," while conservatives accuse those who do revolt of being duped by cunning agitators.
What's changed, all sides agree, is the speed at which bamboozlement can propagate. In the digital age, it seems, a sucker is born every nanosecond.
The Case Against Credulity
Yet Mercier, a cognitive scientist at the Jean Nicod Institute in Paris, thinks we've got the problem backward. To fight disinformation more effectively, he suggests, humans need to stop believing in one thing above all: our own gullibility. "We don't credulously accept whatever we're told—even when those views are supported by the majority of the population, or by prestigious, charismatic individuals," he writes. "On the contrary, we are skilled at figuring out who to trust and what to believe, and, if anything, we're too hard rather than too easy to influence."
He bases those contentions on a growing body of research in neuropsychiatry, evolutionary psychology, and other fields. Humans, Mercier argues, are hardwired to balance openness with vigilance when assessing communicated information. To gauge a statement's accuracy, we instinctively test it from many angles, including: Does it jibe with what I already believe? Does the speaker share my interests? Has she demonstrated competence in this area? What's her reputation for trustworthiness? And, with more complex assertions: Does the argument make sense?
This process, Mercier says, enables us to learn much more from one another than do other animals, and to communicate in a far more complex way—key to our unparalleled adaptability. But it doesn't always save us from trusting liars or embracing demonstrably false beliefs. To better understand why, leapsmag spoke with the author.
How did you come to write Not Born Yesterday?
In 2010, I collaborated with the cognitive scientist Dan Sperber and some other colleagues on a paper called "Epistemic Vigilance," which laid out the argument that evolutionarily, it would make no sense for humans to be gullible. If you can be easily manipulated and influenced, you're going to be in major trouble. But as I talked to people, I kept encountering resistance. They'd tell me, "No, no, people are influenced by advertising, by political campaigns, by religious leaders." I started doing more research to see if I was wrong, and eventually I had enough to write a book.
With all the talk about "fake news" these days, the topic has gotten a lot more timely.
Yes. But on the whole, I'm skeptical that fake news matters very much. And all the energy we spend fighting it is energy not spent on other pursuits that may be better ways of improving our informational environment. The real challenge, I think, is not how to shut up people who say stupid things on the internet, but how to make it easier for people who say correct things to convince people.
"History shows that the audience's state of mind and material conditions matter more than the leader's powers of persuasion."
You start the book with an anecdote about your encounter with a con artist several years ago, who scammed you out of 20 euros. Why did you choose that anecdote?
Although I'm arguing that people aren't generally gullible, I'm not saying we're completely impervious to attempts at tricking us. It's just that we're much better than we think at resisting manipulation. And while there's a risk of trusting someone who doesn't deserve to be trusted, there's also a risk of not trusting someone who could have been trusted. You miss out on someone who could help you, or from whom you might have learned something—including figuring out who to trust.
You argue that in humans, vigilance and open-mindedness evolved hand-in-hand, leading to a set of cognitive mechanisms you call "open vigilance."
There's a common view that people start from a state of being gullible and easy to influence, and get better at rejecting information as they become smarter and more sophisticated. But that's not what really happens. It's much harder to get apes than humans to do anything they don't want to do, for example. And research suggests that over evolutionary time, the better our species became at telling what we should and shouldn't listen to, the more open to influence we became. Even small children have ways to evaluate what people tell them.
The most basic is what I call "plausibility checking": if you tell them you're 200 years old, they're going to find that highly suspicious. Kids pay attention to competence; if someone is an expert in the relevant field, they'll trust her more. They're likelier to trust someone who's nice to them. My colleagues and I have found that by age 2 ½, children can distinguish between very strong and very weak arguments. Obviously, these skills keep developing throughout your life.
But you've found that even the most forceful leaders—and their propaganda machines—have a hard time changing people's minds.
Throughout history, there's been this fear of demagogues leading whole countries into terrible decisions. In reality, these leaders are mostly good at feeling the crowd and figuring out what people want to hear. They're not really influencing [the masses]; they're surfing on pre-existing public opinion. We know from a recent study, for instance, that if you match cities in which Hitler gave campaign speeches in the late '20s through early '30s with similar cities in which he didn't give campaign speeches, there was no difference in vote share for the Nazis. Nazi propaganda managed to make Germans who were already anti-Semitic more likely to express their anti-Semitism or act on it. But Germans who were not already anti-Semitic were completely inured to the propaganda.
So why, in totalitarian regimes, do people seem so devoted to the ruler?
It's not a very complex psychology. In these regimes, the slightest show of discontent can be punished by death, or by you and your whole family being sent to a labor camp. That doesn't mean propaganda has no effect, but you can explain people's obedience without it.
What about cult leaders and religious extremists? Their followers seem willing to believe anything.
Prophets and preachers can inspire the kind of fervor that leads people to suicidal acts or doomed crusades. But history shows that the audience's state of mind and material conditions matter more than the leader's powers of persuasion. Only when people are ready for extreme actions can a charismatic figure provide the spark that lights the fire.
Once a religion becomes ubiquitous, the limits of its persuasive powers become clear. Every anthropologist knows that in societies that are nominally dominated by orthodox belief systems—whether Christian or Muslim or anything else—most people share a view of God, or the spirit, that's closer to what you find in societies that lack such religions. In the Middle Ages, for instance, you have records of priests complaining of how unruly the people are—how they spend the whole Mass chatting or gossiping, or go on pilgrimages mostly because of all the prostitutes and wine-drinking. They continue pagan practices. They resist attempts to make them pay tithes. It's very far from our image of how much people really bought the dominant religion.
"The mainstream media is extremely reliable. The scientific consensus is extremely reliable."
And what about all those wild rumors and conspiracy theories on social media? Don't those demonstrate widespread gullibility?
I think not, for two reasons. One is that most of these false beliefs tend to be held in a way that's not very deep. People may say Pizzagate is true, yet that belief doesn't really interact with the rest of their cognition or their behavior. If you really believe that children are being abused, then trying to free them is the moral and rational thing to do. But the only person who did that was the guy who took his assault weapon to the pizzeria. Most people just left one-star reviews of the restaurant.
The other reason is that most of these beliefs actually play some useful role for people. Before any ethnic massacre, for example, rumors circulate about atrocities having been committed by the targeted minority. But those beliefs aren't what's really driving the phenomenon. In the horrendous pogrom of Kishinev, Moldova, 100 years ago, you had these stories of blood libel—a child disappeared, typical stuff. And then what did the Christian inhabitants do? They raped the [Jewish] women, they pillaged the wine stores, they stole everything they could. They clearly wanted to get that stuff, and they made up something to justify it.
Where do skeptics like climate-change deniers and anti-vaxxers fit into the picture?
Most people in most countries accept that vaccination is good and that climate change is real and man-made. These ideas are deeply counter-intuitive, so the fact that scientists were able to get them across is quite fascinating. But the environment in which we live is vastly different from the one in which we evolved. There's a lot more information, which makes it harder to figure out who we can trust. The main effect is that we don't trust enough; we don't accept enough information. We also rely on shortcuts and heuristics—coarse cues of trustworthiness. There are people who abuse these cues. They may have a PhD or an MD, and they use those credentials to help them spread messages that are not true and not good. Mostly, they're affirming what people want to believe, but they may also be changing minds at the margins.
How can we improve people's ability to resist that kind of exploitation?
I wish I could tell you! That's literally my next project. Generally speaking, though, my advice is very vanilla. The mainstream media is extremely reliable. The scientific consensus is extremely reliable. If you trust those sources, you'll go wrong in a very few cases, but on the whole, they'll probably give you good results. Yet a lot of the problems that we attribute to people being stupid and irrational are not entirely their fault. If governments were less corrupt, if the pharmaceutical companies were irreproachable, these problems might not go away—but they would certainly be minimized.
“Virtual Biopsies” May Soon Make Some Invasive Tests Unnecessary
At his son's college graduation in 2017, Dan Chessin felt "terribly uncomfortable" sitting in the stadium. The bouts of pain persisted, and after months of monitoring, a urologist took biopsies of suspicious areas in his prostate.
This innovation may enhance diagnostic precision and promptness, but it also brings ethical concerns to the forefront.
"In my case, the biopsies came out cancerous," says Chessin, 60, who underwent robotic surgery for intermediate-grade prostate cancer at University Hospitals Cleveland Medical Center.
Although he needed a biopsy, as most patients today do, advances in radiologic technology may make such invasive measures unnecessary in the future. Researchers are developing better imaging techniques and algorithms—a form of computer science called artificial intelligence, in which machines learn and execute tasks that typically require human brain power.
This innovation may enhance diagnostic precision and promptness. But it also brings ethical concerns to the forefront of the conversation, highlighting the potential for invasion of privacy, unequal patient access, and less physician involvement in patient care.
A National Academy of Medicine Special Publication, released in December, emphasizes that setting industry-wide standards for use in patient care is essential to AI's responsible and transparent implementation as the industry grapples with voluminous quantities of data. The technology should be viewed as a tool to supplement decision-making by highly trained professionals, not to replace it.
MRI--a test that uses powerful magnets, radio waves, and a computer to take detailed images inside the body--has become highly accurate in detecting aggressive prostate cancer, but its reliability is more limited in identifying low and intermediate grades of malignancy. That's why Chessin opted to have his prostate removed rather than take the chance of missing anything more suspicious that could develop.
His urologist, Lee Ponsky, says AI's most significant impact is yet to come. He hopes University Hospitals Cleveland Medical Center's collaboration with research scientists at its academic affiliate, Case Western Reserve University, will lead to the invention of a virtual biopsy.
A National Cancer Institute five-year grant is funding the project, launched in 2017, to develop a combined MRI and computerized tool to support more accurate detection and grading of prostate cancer. Such a tool would be "the closest to a crystal ball that we can get," says Ponsky, professor and chairman of the Urology Institute.
In situations where AI has guided diagnostics, radiologists' interpretations of breast, lung, and prostate lesions have improved as much as 25 percent, says Anant Madabhushi, a biomedical engineer and director of the Center for Computational Imaging and Personalized Diagnostics at Case Western Reserve, who is collaborating with Ponsky. "AI is very nascent," Madabhushi says, estimating that fewer than 10 percent of niche academic medical centers have used it. "We are still optimizing and validating the AI and virtual biopsy technology."
In October, several North American and European professional organizations of radiologists, imaging informaticists, and medical physicists released a joint statement on the ethics of AI. "Ultimate responsibility and accountability for AI remains with its human designers and operators for the foreseeable future," reads the statement, published in the Journal of the American College of Radiology. "The radiology community should start now to develop codes of ethics and practice for AI that promote any use that helps patients and the common good and should block use of radiology data and algorithms for financial gain without those two attributes."
Overreliance on new technology also poses concern when humans "outsource the process to a machine."
The statement's leader author, radiologist J. Raymond Geis, says "there's no question" that machines equipped with artificial intelligence "can extract more information than two human eyes" by spotting very subtle patterns in pixels. Yet, such nuances are "only part of the bigger picture of taking care of a patient," says Geis, a senior scientist with the American College of Radiology's Data Science Institute. "We have to be able to combine that with knowledge of what those pixels mean."
Setting ethical standards is high on all physicians' radar because the intricacies of each patient's medical record are factored into the computer's algorithm, which, in turn, may be used to help interpret other patients' scans, says radiologist Frank Rybicki, vice chair of operations and quality at the University of Cincinnati's department of radiology. Although obtaining patients' informed consent in writing is currently necessary, ethical dilemmas arise if and when patients have a change of heart about the use of their private health information. It is likely that removing individual data may be possible for some algorithms but not others, Rybicki says.
The information is de-identified to protect patient privacy. Using it to advance research is akin to analyzing human tissue removed in surgical procedures with the goal of discovering new medicines to fight disease, says Maryellen Giger, a University of Chicago medical physicist who studies computer-aided diagnosis in cancers of the breast, lung, and prostate, as well as bone diseases. Physicians who become adept at using AI to augment their interpretation of imaging will be ahead of the curve, she says.
As with other new discoveries, patient access and equality come into play. While AI appears to "have potential to improve over human performance in certain contexts," an algorithm's design may result in greater accuracy for certain groups of patients, says Lucia M. Rafanelli, a political theorist at The George Washington University. This "could have a disproportionately bad impact on one segment of the population."
Overreliance on new technology also poses concern when humans "outsource the process to a machine." Over time, they may cease developing and refining the skills they used before the invention became available, said Chloe Bakalar, a visiting research collaborator at Princeton University's Center for Information Technology Policy.
"AI is a paradigm shift with magic power and great potential."
Striking the right balance in the rollout of the technology is key. Rushing to integrate AI in clinical practice may cause harm, whereas holding back too long could undermine its ability to be helpful. Proper governance becomes paramount. "AI is a paradigm shift with magic power and great potential," says Ge Wang, a biomedical imaging professor at Rensselaer Polytechnic Institute in Troy, New York. "It is only ethical to develop it proactively, validate it rigorously, regulate it systematically, and optimize it as time goes by in a healthy ecosystem."