Will COVID-19 Pave the Way For Home-Based Precision Medicine?
It looks like an ordinary toilet but it is anything but. The "smart toilet" is the diagnostic tool of the future, equipped with cameras that take snapshots of the users and their waste, motion sensors to analyze what's inside the urine and stool samples, and software that automatically sends data to a secure, cloud-based system that can be easily accessed by your family doctor.
"It's a way of doing community surveillance. If there is a second wave of infections in the future, we'll know right away."
Using urine "dipstick tests" similar to the home pregnancy strips, the smart toilet can detect certain proteins, immune system biomarkers and blood cells that indicate the presence of such diseases as infections, bladder cancer, and kidney failure.
The rationale behind this invention is that some of the best ways of detecting what's going on in our bodies is by analyzing the substances we excrete every day, our sweat, urine, saliva and yes, our feces. Instead of getting sporadic snapshots from doctor's visits once or twice a year, the smart toilet provides continuous monitoring of our health 24/7, so we can catch the tell-tale molecular signature of illnesses at their earliest and most treatable stages. A brainchild of Stanford University researchers, they're now working to add a COVID-19 detection component to their suite of technologies—corona virus particles can be spotted in stool samples—and hope to have the system available within the year.
"We can connect the toilet system to cell phones so we'll know the results within 30 minutes," says Seung-min Park, a lead investigator on the research team that devised this technology and a senior research scientist at the Stanford University School of Medicine. "The beauty of this technology is that it can continuously monitor even after this pandemic is over. It's a way of doing community surveillance. If there is a second wave of infections in the future, we'll know right away."
Experts believe that the COVID-19 pandemic will accelerate the widespread acceptance of in-home diagnostic tools such as this. "Shock events" like pandemics can be catalysts for sweeping changes in society, history shows us. The Black Death marked the end of feudalism and ushered in the Renaissance while the aftershocks of the Great Depression and two world wars in the 20th century led to the social safety net of the New Deal and NATO and the European Union. COVID-19 could fundamentally alter the way we deliver healthcare, abandoning the outdated 20th century brick and mortar fee-for-service model in favor of digital medicine. At-home diagnostics may be the leading edge of this seismic shift and the pandemic could accelerate the product innovations that allow for home-based medical screening.
"That's the silver lining to this devastation," says Dr. Leslie Saxon, executive director of the USC Center for Body Computing at the Keck School of Medicine in Los Angeles. As an interventional cardiologist, Saxon has spent her career devising and refining the implantable and wearable wireless devices that are used to treat and diagnose heart conditions and prevent sudden death. "This will open up innovation—research has been stymied by a lack of imagination and marriage to an antiquated model," she adds. "There are already signs this is happening—relaxing state laws about licensure, allowing physicians to deliver health care in non-traditional ways. That's a real sea change and will completely democratize medical information and diagnostic testing."
Ironically, diagnostics have long been a step-child of modern medicine, even though accurate and timely diagnostics play a crucial role in disease prevention, detection and management. "The delivery of health care has proceeded for decades with a blind spot: diagnostic errors—inaccurate or delayed diagnoses—persist throughout all settings of care and continue to harm an unacceptable number of patients," according to a 2015 National Academy of Medicine report. That same report found as many as one out of five adverse events in the hospital result from these errors and they contribute to 10 percent of all patient deaths.
The pandemic should alter the diagnostic landscape. We already have a wealth of wearable and implantable devices, like glucose sensors to monitor blood sugar levels for diabetics, Apple's smart watch, electrocardiogram devices that can detect heart arrythmias, and heart pacemakers.
The Food and Drug Administration is working closely with in-home test developers to make accurate COVID-19 diagnostic tools readily available and has so far greenlighted three at-home collection test kits. Two, LabCorp's and Everlywell's, use nasal swabs to take samples. The third one is a spit test, using saliva samples, that was devised by a Rutgers University laboratory in partnership with Spectrum Solutions and Accurate Diagnostic Labs.
The only way to safely reopen is through large scale testing, but hospitals and doctors' offices are no longer the safest places.
In fact, DIY diagnostic company Everlywell, an Austin, Texas- based digital health company, already offers more than 30 at-home kits for everything from fertility to food sensitivity tests. Typically, consumers collect a saliva or finger-prick blood sample, dispatch it in a pre-paid shipping envelope to a laboratory, and a physician will review the results and send a report to consumers' smartphones.
Thanks to advances in technology, samples taken at home can now be preserved long enough to arrive intact at diagnostic laboratories. The key is showing the agency "transport and shipping don't change or interfere with the integrity of the samples," says Dr. Frank Ong, Everlywell's chief medical and scientific officer.
Ong is keenly aware of the importance of saturation testing because of the lessons learned by colleagues fighting the SARS pandemic in his family's native Taiwan in 2003. "In the beginning, doctors didn't know what they were dealing with and didn't protect themselves adequately," he says. "But over two years, they learned the hard way that there needs to be enough testing, contact tracing of those who have been exposed, and isolation of people who test positive. The value of at-home testing is that it can be done on the kind of broad basis that needs to happen for our country to get back to work."
Because of the pandemic, new policies have removed some of the barriers that impeded the widespread adoption of home-based diagnostics and telemedicine. Physicians can now practice across state lines, get reimbursed for telemedicine visits and use FaceTime to communicate with their patients, which had long been considered taboo because of privacy issues. Doctors and patients are becoming more comfortable and realizing the convenience and benefits of being able to do these things virtually.
Added to this, the only way to safely reopen for business without triggering a second and perhaps even more deadly wave of sickness is through large-scale testing, but hospitals and doctors' offices are no longer the safest places. "We don't want people sitting in a waiting room who later find out they're positive, and potentially infected everyone, including doctors and nurses," says Dr. Kavita Patel, a physician in Washington, DC who served as a policy director in the Obama White House.
In-home testing avoids the risks of direct exposure to the virus for both patients and health care professionals, who can dispense with cumbersome protective gear to take samples, and also enables people without reliable transportation or child-care to learn their status. "At home testing can be a critical component of our country's overall testing strategy," says Dr. Shantanu Nundy, chief medical officer at Accolade Health and on the faculty of the Milken Institute School of Public Health at George Washington University. "Once we're back at work, we need to be much more targeted, and have much more access to data and controlling those outbreaks as tightly as possible. The best way to do that is by leapfrogging clinics and being able to deliver tests at home for people who are disenfranchised by the current system."
In the not-too-distant future, in-home diagnostics could be a key component of precision medicine, which is customized care tailored specifically to each patient's individual needs. Like Stanford's smart toilet prototype, these ongoing surveillance tools will gather health data, ranging from exposures to toxins and pollutions in the environment to biochemical activity, like rising blood pressure, signs of inflammation, failing kidneys or tiny cancerous tumors, and provide continuous real-time information.
"These can be deeply personalized and enabled by smart phones, sensors and artificial intelligence," says USC's Leslie Saxon. "We'll be seeing the floodgates opening to patients accessing medical services through the same devices that they access other things, and leveraging these tools for our health and to fine tune disease management in a model of care that is digitally enabled."
[Editor's Note: This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]
Fast for Longevity, with Less Hunger, with Dr. Valter Longo
You’ve probably heard about intermittent fasting, where you don’t eat for about 16 hours each day and limit the window where you’re taking in food to the remaining eight hours.
But there’s another type of fasting, called a fasting-mimicking diet, with studies pointing to important benefits. For today’s podcast episode, I chatted with Dr. Valter Longo, a biogerontologist at the University of Southern California, about all kinds of fasting, and particularly the fasting-mimicking diet, which minimizes hunger as much as possible. Going without food for a period of time is an example of good stress: challenges that work at the cellular level to boost health and longevity.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
If you’ve ever spent more than a few minutes looking into fasting, you’ve almost certainly come upon Dr. Longo's name. He is the author of the bestselling book, The Longevity Diet, and the best known researcher of fasting-mimicking diets.
With intermittent fasting, your body might begin to switch up its fuel type. It's usually running on carbs you get from food, which gets turned into glucose, but without food, your liver starts making something called ketones, which are molecules that may benefit the body in a number of ways.
With the fasting-mimicking diet, you go for several days eating only types of food that, in a way, keep themselves secret from your body. So at the level of your cells, the body still thinks that it’s fasting. This is the best of both worlds – you’re not completely starving because you do take in some food, and you’re getting the boosts to health that come with letting a fast run longer than intermittent fasting. In this episode, Dr. Longo talks about the growing number of studies showing why this could be very advantageous for health, as long as you undertake the diet no more than a few times per year.
Dr. Longo is the director of the Longevity Institute at USC’s Leonard Davis School of Gerontology, and the director of the Longevity and Cancer program at the IFOM Institute of Molecular Oncology in Milan. In addition, he's the founder and president of the Create Cures Foundation in L.A., which focuses on nutrition for the prevention and treatment of major chronic illnesses. In 2016, he received the Glenn Award for Research on Aging for the discovery of genes and dietary interventions that regulate aging and prevent diseases. Dr. Longo received his PhD in biochemistry from UCLA and completed his postdoc in the neurobiology of aging and Alzheimer’s at USC.
Show links:
Create Cures Foundation, founded by Dr. Longo: www.createcures.org
Dr. Longo's Facebook: https://www.facebook.com/profvalterlongo/
Dr. Longo's Instagram: https://www.instagram.com/prof_valterlongo/
Dr. Longo's book: The Longevity Diet
The USC Longevity Institute: https://gero.usc.edu/longevity-institute/
Dr. Longo's research on nutrition, longevity and disease: https://pubmed.ncbi.nlm.nih.gov/35487190/
Dr. Longo's research on fasting mimicking diet and cancer: https://pubmed.ncbi.nlm.nih.gov/34707136/
Full list of Dr. Longo's studies: https://pubmed.ncbi.nlm.nih.gov/?term=Longo%2C+Valter%5BAuthor%5D&sort=date
Research on MCT oil and Alzheimer's: https://alz-journals.onlinelibrary.wiley.com/doi/f...
Keto Mojo device for measuring ketones
Silkworms with spider DNA spin silk stronger than Kevlar
Story by Freethink
The study and copying of nature’s models, systems, or elements to address complex human challenges is known as “biomimetics.” Five hundred years ago, an elderly Italian polymath spent months looking at the soaring flight of birds. The result was Leonardo da Vinci’s biomimetic Codex on the Flight of Birds, one of the foundational texts in the science of aerodynamics. It’s the science that elevated the Wright Brothers and has yet to peak.
Today, biomimetics is everywhere. Shark-inspired swimming trunks, gecko-inspired adhesives, and lotus-inspired water-repellents are all taken from observing the natural world. After millions of years of evolution, nature has quite a few tricks up its sleeve. They are tricks we can learn from. And now, thanks to some spider DNA and clever genetic engineering, we have another one to add to the list.
The elusive spider silk
We’ve known for a long time that spider silk is remarkable, in ways that synthetic fibers can’t emulate. Nylon is incredibly strong (it can support a lot of force), and Kevlar is incredibly tough (it can absorb a lot of force). But neither is both strong and tough. In all artificial polymeric fibers, strength and toughness are mutually exclusive, and so we pick the material best for the job and make do.
Spider silk, a natural polymeric fiber, breaks this rule. It is somehow both strong and tough. No surprise, then, that spider silk is a source of much study.The problem, though, is that spiders are incredibly hard to cultivate — let alone farm. If you put them together, they will attack and kill each other until only one or a few survive. If you put 100 spiders in an enclosed space, they will go about an aggressive, arachnocidal Hunger Games. You need to give each its own space and boundaries, and a spider hotel is hard and costly. Silkworms, on the other hand, are peaceful and productive. They’ll hang around all day to make the silk that has been used in textiles for centuries. But silkworm silk is fragile. It has very limited use.
The elusive – and lucrative – trick, then, would be to genetically engineer a silkworm to produce spider-quality silk. So far, efforts have been fruitless. That is, until now.
We can have silkworms creating silk six times as tough as Kevlar and ten times as strong as nylon.
Spider-silkworms
Junpeng Mi and his colleagues working at Donghua University, China, used CRISPR gene-editing technology to recode the silk-creating properties of a silkworm. First, they took genes from Araneus ventricosus, an East Asian orb-weaving spider known for its strong silk. Then they placed these complex genes – genes that involve more than 100 amino acids – into silkworm egg cells. (This description fails to capture how time-consuming, technical, and laborious this was; it’s a procedure that requires hundreds of thousands of microinjections.)
This had all been done before, and this had failed before. Where Mi and his team succeeded was using a concept called “localization.” Localization involves narrowing in on a very specific location in a genome. For this experiment, the team from Donghua University developed a “minimal basic structure model” of silkworm silk, which guided the genetic modifications. They wanted to make sure they had the exactly right transgenic spider silk proteins. Mi said that combining localization with this basic structure model “represents a significant departure from previous research.” And, judging only from the results, he might be right. Their “fibers exhibited impressive tensile strength (1,299 MPa) and toughness (319 MJ/m3), surpassing Kevlar’s toughness 6-fold.”
A world of super-materials
Mi’s research represents the bursting of a barrier. It opens up hugely important avenues for future biomimetic materials. As Mi puts it, “This groundbreaking achievement effectively resolves the scientific, technical, and engineering challenges that have hindered the commercialization of spider silk, positioning it as a viable alternative to commercially synthesized fibers like nylon and contributing to the advancement of ecological civilization.”
Around 60 percent of our clothing is made from synthetic fibers like nylon, polyester, and acrylic. These plastics are useful, but often bad for the environment. They shed into our waterways and sometimes damage wildlife. The production of these fibers is a source of greenhouse gas emissions. Now, we have a “sustainable, eco-friendly high-strength and ultra-tough alternative.” We can have silkworms creating silk six times as tough as Kevlar and ten times as strong as nylon.
We shouldn’t get carried away. This isn’t going to transform the textiles industry overnight. Gene-edited silkworms are still only going to produce a comparatively small amount of silk – even if farmed in the millions. But, as Mi himself concedes, this is only the beginning. If Mi’s localization and structure-model techniques are as remarkable as they seem, then this opens up the door to a great many supermaterials.
Nature continues to inspire. We had the bird, the gecko, and the shark. Now we have the spider-silkworm. What new secrets will we unravel in the future? And in what exciting ways will it change the world?