Your Beloved Pet Is Old. Should You Clone It?
Melvin was a special dog. A mixture of Catahoula and Doberman with black and tan markings, he was the office greeter, barking hellos to everyone who visited the Dupont Veterinary Clinic in Lafayette, Louisiana, which is owned by his human companions, Dr. Phillip Dupont and his wife, Paula. The couple say he's the best dog they ever owned.
When Melvin passed away, having two identical replicas helped ease the couple's grief.
He seemed to have an uncanny knack for understanding what they were saying, he could find lost car keys in tall grasses and the Duponts trusted him so much they felt comfortable having him babysit their grandson unattended in the backyard.
So when the 75-pound canine turned 9 and began to show signs of age, the Duponts sent off some of his skin cells to a lab in South Korea, the Sooam Biotech Research Foundation, to have him cloned. The Duponts toured the South Korean facilities and were satisfied that the animals were being treated well. While the first cloned puppy died from distemper, the second attempt produced two healthy animals—which the couple named Ken and Henry. When Melvin did pass away nearly two years later, in 2014, having two identical replicas helped ease the couple's grief. Even though it cost about $70,000 to clone Melvin, it was well worth it. "Melvin gave us a lot of pleasure," says Paula Dupont, "and this was less than the price of a new Land Cruiser."
As the technology improves, costs will tumble, making pet cloning more affordable for the mainstream.
The news has been filled recently with stories of celebrities such as Barbra Streisand or billionaire Barry Diller and his fashion icon wife, Diane von Furstenberg, spending big bucks to preserve their beloved pets—a practice New York magazine called "a laughable, extravagant waste of money." But cloning Fido isn't just for the ultra-wealthy anymore. Texas-based ViaGen now offers a domestic cloning service that will replicate Lassie for $50,000 and Garfield's kittens for a mere $25,000. While the exact number of cloned pets isn't known, the South Korean company says it has cloned about 800 pets while ViaGen has cloned about 100 cats and dogs. And as the technology improves, costs will tumble, making it more affordable for the mainstream, says Ron Gillespie, who heads PerPETuate, a Massachusetts-based outfit that collects and cryo preserves pet DNA, and works closely with ViaGen.
Even if the animals are genetic twins, biologists say, there are no guarantees their personalities will match, too.
While replicating Fido is becoming more feasible, should you? Animal rights organizations like The Humane Society and PETA are sharply critical of the practice, which is largely unregulated, and think it's outrageous to spend $50,000 or more to preserve Fluffy's genetic makeup when millions of cats and dogs are languishing in shelters and millions more are euthanized every year. And even if the animals are genetic twins, biologists say, there are no guarantees their personalities will match, too. Like humans, dogs' personalities are influenced by their environment and there are always variations in how the genes are expressed--although the Duponts say that Ken and Henry seem more like Melvin every day. "Their personalities are identical," says Paula.
Clones Ken and Henry, with Dr. Dupont and 10-year-old Melvin. Though all three dogs are genetic twins, their markings differ because the environment can influence how genes are expressed.
Still, the loss of a beloved pet can be incredibly painful, and in some cases, cloning can help deal with deep psychological wounds. When Monni Must's daughter died suddenly at age 28, the Michigan-based photographer adopted her child's black Lab, Billy Bean. As the dog got older and frailer, Must realized she couldn't handle losing her last link to her daughter—so she ponied up $50,000 to have the animal cloned. "I knew that I was falling apart," Must told Agence France-Presse. "The thought of Billy dying was just more than I could handle."
But these heated disputes miss what bioethicists believe is the real ethical dilemma—the fate of the female animals that provide the eggs and gestate the cloned puppies. "This issue tends to get framed as 'it's their personal choice, it's their money and they can do what they want with it,'" says Jessica Pierce, a bioethicist and author of Run, Spot, Run: The Ethics of Keeping Pets. "But this whole enterprise has all this collateral damage and behind-the-scenes impacts that people ignore. No one is talking about the dogs who are sacrificing themselves for this indulgence, and are suffering and being tormented just to have your clone."
"Even in the best-case scenarios, the cloned pet may go through several rounds of failed reproductive attempts—failed pregnancies, still births, and deformities."
Animal cloning, of course, is not new. Dolly, the sheep, made her debut in 1996 as the first cloned mammal. In 2005, Korea's Sooam Biotech cloned the first dog, and cloning horses and cows has become almost routine. Typically, the cloning process for dogs is fairly uncomplicated. It entails the use of a group of female dogs whose hormones are artificially manipulated with drugs to promote them to produce eggs. The eggs are then surgically harvested from donor dogs' ovaries. The immature eggs are stripped of their genetic information and then the pet's DNA is fused with the egg. When the embryo begins to develop, it is then transplanted to the womb of a surrogate dog.
However, cloning can have a high failure rate. When South Korea's Sooam Biotech lab cloned the first dog in 2005, there were 1000 failures—which means that number of eggs were fertilized and began to gestate, but at some point their development failed. And this figure doesn't include the number of dogs born with deformities serious enough that they are incompatible with life and need to be euthanized. "Even in the best-case scenarios, the cloned pet may go through several rounds of failed reproductive attempts—failed pregnancies, still births, and deformities," says Insoo Hyun, a bioethicist at Case Western Reserve University in Cleveland. "You can't do just one egg and one transfer. That won't happen. There is no guarantee that the very first time you will have a healthy animal. They're not miracle workers and you can't fight biology."
"You just have to let your pet go. It's all part of the experience."
But Ron Gillespie, who's been in the animal breeding business for decades, thinks these fears are overblown and that cloning is similar to the selective breeding that goes on all the time with cattle and even with champion racehorses. "We're really the victim of a lot of misinformation and misunderstanding," he says. "Right now, on average, we're dealing with three dogs: two that supply eggs and one to carry the embryo to term."
Still, this debate skirts the hard realities: dogs and cats simply have shorter lifespans than humans, and ethicists and animal rights activists believe there are better ways to deal with that grief. "You just have to let your pet go," says Hyun. "It's all part of the experience."
A new injection is helping stave off RSV this season
In November 2021, Mickayla Wininger’s then one-month-old son, Malcolm, endured a terrifying bout with RSV, the respiratory syncytial (sin-SISH-uhl) virus—a common ailment that affects all age groups. Most people recover from mild, cold-like symptoms in a week or two, but RSV can be life-threatening in others, particularly infants.
Wininger, who lives in southern Illinois, was dressing Malcolm for bed when she noticed what seemed to be a minor irregularity with this breathing. She and her fiancé, Gavin McCullough, planned to take him to the hospital the next day. The matter became urgent when, in the morning, the boy’s breathing appeared to have stopped.
After they dialed 911, Malcolm started breathing again, but he ended up being hospitalized three times for RSV and defects in his heart. Eventually, he recovered fully from RSV, but “it was our worst nightmare coming to life,” Wininger recalled.
It’s a scenario that the federal government is taking steps to prevent. In July, the Food and Drug Administration approved a single-dose, long-acting injection to protect babies and toddlers. The injection, called Beyfortus, or nirsevimab, became available this October. It reduces the incidence of RSV in pre-term babies and other infants for their first RSV season. Children at highest risk for severe RSV are those who were born prematurely and have either chronic lung disease of prematurity or congenital heart disease. In those cases, RSV can progress to lower respiratory tract diseases such as pneumonia and bronchiolitis, or swelling of the lung’s small airway passages.
Each year, RSV is responsible for 2.1 million outpatient visits among children younger than five-years-old, 58,000 to 80,000 hospitalizations in this age group, and between 100 and 300 deaths, according to the Centers for Disease Control and Prevention. Transmitted through close contact with an infected person, the virus circulates on a seasonal basis in most regions of the country, typically emerging in the fall and peaking in the winter.
In August, however, the CDC issued a health advisory on a late-summer surge in severe cases of RSV among young children in Florida and Georgia. The agency predicts "increased RSV activity spreading north and west over the following two to three months.”
Infants are generally more susceptible to RSV than older people because their airways are very small, and their mechanisms to clear these passages are underdeveloped. RSV also causes mucus production and inflammation, which is more of a problem when the airway is smaller, said Jennifer Duchon, an associate professor of newborn medicine and pediatrics in the Icahn School of Medicine at Mount Sinai in New York.
In 2021 and 2022, RSV cases spiked, sending many to emergency departments. “RSV can cause serious disease in infants and some children and results in a large number of emergency department and physician office visits each year,” John Farley, director of the Office of Infectious Diseases in the FDA’s Center for Drug Evaluation and Research, said in a news release announcing the approval of the RSV drug. The decision “addresses the great need for products to help reduce the impact of RSV disease on children, families and the health care system.”
Sean O’Leary, chair of the committee on infectious diseases for the American Academy of Pediatrics, says that “we’ve never had a product like this for routine use in children, so this is very exciting news.” It is recommended for all kids under eight months old for their first RSV season. “I would encourage nirsevimab for all eligible children when it becomes available,” O’Leary said.
For those children at elevated risk of severe RSV and between the ages of 8 and 19 months, the CDC recommends one dose in their second RSV season.
The drug will be “really helpful to keep babies healthy and out of the hospital,” said O’Leary, a professor of pediatrics at the University of Colorado Anschutz Medical Campus/Children’s Hospital Colorado in Denver.
An antiviral drug called Synagis (palivizumab) has been an option to prevent serious RSV illness in high-risk infants since it was approved by the FDA in 1998. The injection must be given monthly during RSV season. However, its use is limited to “certain children considered at high risk for complications, does not help cure or treat children already suffering from serious RSV disease, and cannot prevent RSV infection,” according to the National Foundation for Infectious Diseases.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants.
Both nirsevimab and palivizumab are monoclonal antibodies that act against RSV. Monoclonal antibodies are lab-made proteins that mimic the immune system’s ability to fight off harmful pathogens such as viruses. A single intramuscular injection of nirsevimab preceding or during RSV season may provide protection.
The strategy with the new monoclonal antibody is “to extend protection to healthy infants who nonetheless are at risk because of their age, as well as infants with additional medical risk factors,” said Philippa Gordon, a pediatrician and infectious disease specialist in Brooklyn, New York, and medical adviser to Park Slope Parents, an online community support group.
No specific preventive measure is needed for older and healthier kids because they will develop active immunity, which is more durable. Meanwhile, older adults, who are also vulnerable to RSV, can receive one of two new vaccines. So can pregnant women, who pass on immunity to the fetus, Gordon said.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants, “nor is there any treatment other than giving oxygen or supportive care,” said Stanley Spinner, chief medical officer and vice president of Texas Children’s Pediatrics and Texas Children’s Urgent Care.
As with any virus, washing hands frequently and keeping infants and children away from sick people are the best defenses, Duchon said. This approach isn’t foolproof because viruses can run rampant in daycare centers, schools and parents’ workplaces, she added.
Mickayla Wininger, Malcolm’s mother, insists that family and friends wear masks, wash their hands and use hand sanitizer when they’re around her daughter and two sons. She doesn’t allow them to kiss or touch the children. Some people take it personally, but she would rather be safe than sorry.
Wininger recalls the severe anxiety caused by Malcolm's ordeal with RSV. After returning with her infant from his hospital stays, she was terrified to go to sleep. “My fiancé and I would trade shifts, so that someone was watching over our son 24 hours a day,” she said. “I was doing a night shift, so I would take caffeine pills to try and keep myself awake and would end up crashing early hours in the morning and wake up frantically thinking something happened to my son.”
Two years later, her anxiety has become more manageable, and Malcolm is doing well. “He is thriving now,” Wininger said. He recently had his second birthday and "is just the spunkiest boy you will ever meet. He looked death straight in the eyes and fought to be here today.”
Story by Big Think
For most of history, artificial intelligence (AI) has been relegated almost entirely to the realm of science fiction. Then, in late 2022, it burst into reality — seemingly out of nowhere — with the popular launch of ChatGPT, the generative AI chatbot that solves tricky problems, designs rockets, has deep conversations with users, and even aces the Bar exam.
But the truth is that before ChatGPT nabbed the public’s attention, AI was already here, and it was doing more important things than writing essays for lazy college students. Case in point: It was key to saving the lives of tens of millions of people.
AI-designed mRNA vaccines
As Dave Johnson, chief data and AI officer at Moderna, told MIT Technology Review‘s In Machines We Trust podcast in 2022, AI was integral to creating the company’s highly effective mRNA vaccine against COVID. Moderna and Pfizer/BioNTech’s mRNA vaccines collectively saved between 15 and 20 million lives, according to one estimate from 2022.
Johnson described how AI was hard at work at Moderna, well before COVID arose to infect billions. The pharmaceutical company focuses on finding mRNA therapies to fight off infectious disease, treat cancer, or thwart genetic illness, among other medical applications. Messenger RNA molecules are essentially molecular instructions for cells that tell them how to create specific proteins, which do everything from fighting infection, to catalyzing reactions, to relaying cellular messages.
Johnson and his team put AI and automated robots to work making lots of different mRNAs for scientists to experiment with. Moderna quickly went from making about 30 per month to more than one thousand. They then created AI algorithms to optimize mRNA to maximize protein production in the body — more bang for the biological buck.
For Johnson and his team’s next trick, they used AI to automate science, itself. Once Moderna’s scientists have an mRNA to experiment with, they do pre-clinical tests in the lab. They then pore over reams of data to see which mRNAs could progress to the next stage: animal trials. This process is long, repetitive, and soul-sucking — ill-suited to a creative scientist but great for a mindless AI algorithm. With scientists’ input, models were made to automate this tedious process.
“We don’t think about AI in the context of replacing humans,” says Dave Johnson, chief data and AI officer at Moderna. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
All these AI systems were in put in place over the past decade. Then COVID showed up. So when the genome sequence of the coronavirus was made public in January 2020, Moderna was off to the races pumping out and testing mRNAs that would tell cells how to manufacture the coronavirus’s spike protein so that the body’s immune system would recognize and destroy it. Within 42 days, the company had an mRNA vaccine ready to be tested in humans. It eventually went into hundreds of millions of arms.
Biotech harnesses the power of AI
Moderna is now turning its attention to other ailments that could be solved with mRNA, and the company is continuing to lean on AI. Scientists are still coming to Johnson with automation requests, which he happily obliges.
“We don’t think about AI in the context of replacing humans,” he told the Me, Myself, and AI podcast. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
Moderna, which was founded as a “digital biotech,” is undoubtedly the poster child of AI use in mRNA vaccines. Moderna recently signed a deal with IBM to use the company’s quantum computers as well as its proprietary generative AI, MoLFormer.
Moderna’s success is encouraging other companies to follow its example. In January, BioNTech, which partnered with Pfizer to make the other highly effective mRNA vaccine against COVID, acquired the company InstaDeep for $440 million to implement its machine learning AI across its mRNA medicine platform. And in May, Chinese technology giant Baidu announced an AI tool that designs super-optimized mRNA sequences in minutes. A nearly countless number of mRNA molecules can code for the same protein, but some are more stable and result in the production of more proteins. Baidu’s AI, called “LinearDesign,” finds these mRNAs. The company licensed the tool to French pharmaceutical company Sanofi.
Writing in the journal Accounts of Chemical Research in late 2021, Sebastian M. Castillo-Hair and Georg Seelig, computer engineers who focus on synthetic biology at the University of Washington, forecast that AI machine learning models will further accelerate the biotechnology research process, putting mRNA medicine into overdrive to the benefit of all.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.