How Should Genetic Engineering Shape Our Future?
Terror. Error. Success. These are the three outcomes that ethicists evaluating a new technology should fear. The possibility that a breakthrough might be used maliciously. The possibility that newly empowered scientists might make a catastrophic mistake. And the possibility that a technology will be so successful that it will change how we live in ways that we can only guess—and that we may not want.
These tools will allow scientists to practice genetic engineering on a scale that is simultaneously far more precise and far more ambitious than ever before.
It was true for the scientists behind the Manhattan Project, who bequeathed a fear of nuclear terror and nuclear error, even as global security is ultimately defined by these weapons of mass destruction. It was true for the developers of the automobile, whose invention has been weaponized by terrorists and kills 3,400 people by accident each day, even as the more than 1 billion cars on the road today have utterly reshaped where we live and how we move. And it is true for the researchers behind the revolution in gene editing and writing.
Put simply, these tools will allow scientists to practice genetic engineering on a scale that is simultaneously far more precise and far more ambitious than ever before. Editing techniques like CRISPR enable exact genetic repairs through a simple cut and paste of DNA, while synthetic biologists aim to redo entire genomes through the writing and substitution of synthetic genes. The technologies are complementary, and they herald an era when the book of life will be not just readable, but rewritable. Food crops, endangered animals, even the human body itself—all will eventually be programmable.
The benefits are easy to imagine: more sustainable crops; cures for terminal genetic disorders; even an end to infertility. Also easy to picture are the ethical pitfalls as the negative images of those same benefits.
Terror is the most straightforward. States have sought to use biology as a weapon at least since invading armies flung the corpses of plague victims into besieged castles. The 1975 biological weapons convention banned—with general success—the research and production of offensive bioweapons, though a handful of lone terrorists and groups like the Oregon-based Rajneeshee cult have still carried out limited bioweapon attacks. Those incidents ultimately caused little death and damage, in part because medical science is mostly capable of defending us from those pathogens that are most easily weaponized. But gene editing and writing offers the chance to engineer germs that could be far more effective than anything nature could develop. Imagine a virus that combines the lethality of Ebola with the transmissibility of the common cold—and in the new world of biology, if you can imagine something, you will eventually be able to create it.
The benefits are easy to imagine: more sustainable crops; cures for terminal genetic disorders; even an end to infertility. Also easy to picture are the ethical pitfalls.
That's one reason why James Clapper, then the U.S. director of national intelligence, added gene editing to the list of threats posed by "weapons of mass destruction and proliferation" in 2016. But these new tools aren't merely dangerous in the wrong hands—they can also be dangerous in the right hands. The list of labs accidents involving lethal bugs is much longer than you'd want to know, at least if you're the sort of person who likes to sleep at night. The U.S. recently lifted a ban on research that works to make existing pathogens, like the H5N1 avian flu virus, more virulent and transmissible, often using new technologies like gene editing. Such work can help medicine better prepare for what nature might throw at us, but it could also make the consequences of a lab error far more catastrophic. There's also the possibility that the use of gene editing and writing in nature—say, by CRISPRing disease-carrying mosquitoes to make them sterile—could backfire in some unforeseen way. Add in the fact that the techniques behind gene editing and writing are becoming simpler and more automated with every year, and eventually millions of people will be capable—through terror or error—of unleashing something awful on the world.
The good news is that both the government and the researchers driving these technologies are increasingly aware of the risks of bioterror and error. One government program, the Functional Genomic and Computational Assessment of Threats (Fun GCAT), provides funding for scientists to scan genetic data looking for the "accidental or intentional creation of a biological threat." Those in the biotech industry know to keep an eye out for suspicious orders—say, a new customer who orders part of the sequence of the Ebola or smallpox virus. "With every invention there is a good use and a bad use," Emily Leproust, the CEO of the commercial DNA synthesis startup Twist Bioscience, said in a recent interview. "What we try hard to do is put in place as many systems as we can to maximize the good stuff, and minimize any negative impact."
But the greatest ethical challenges in gene editing and writing will arise not from malevolence or mistakes, but from success. Through a new technology called in vitro gametogenesis (IVG), scientists are learning how to turn adult human cells like a piece of skin into lab-made sperm and egg cells. That would be a huge breakthrough for the infertile, or for same-sex couples who want to conceive a child biologically related to both partners. It would also open the door to using gene editing to tinker with those lab-made embryos. At first interventions would address any obvious genetic disorders, but those same tools would likely allow the engineering of a child's intelligence, height and other characteristics. We might be morally repelled today by such an ability, as many scientists and ethicists were repelled by in-vitro fertilization (IVF) when it was introduced four decades ago. Yet more than a million babies in the U.S. have been born through IVF in the years since. Ethics can evolve along with technology.
These new technologies offer control over the code of life, but only we as a society can seize control over where these tools will take us.
Fertility is just one human institution that stands to be changed utterly by gene editing and writing, and it's a change we can at least imagine. As the new biology grows more ambitious, it will alter society in ways we can't begin to picture. Harvard's George Church and New York University's Jef Boeke are leading an effort called HGP-Write to create a completely synthetic human genome. While gene editing allows scientists to make small changes to the genome, the gene synthesis that Church and his collaborators are developing allows for total genetic rewrites. "It's a difference between editing a book and writing one," Church said in an interview earlier this year.
Church is already working on synthesizing organs that would be resistant to viruses, while other researchers like Harris Wang at Columbia University are experimenting with bioengineering mammalian cells to produce nutrients like amino acids that we currently need to get from food. The horizon is endless—and so are the ethical concerns of success. What if parents feel pressure to engineer their children just so they don't fall behind their IVG peers? What if only the rich are able to access synthetic biology technologies that could make them stronger, smarter and longer lived? Could inequality become encoded in the genome?
These are questions that are different from the terror and errors fears around biosecurity, because they ask us to think hard about what kind of future we want. To their credit, Church and his collaborators have engaged bioethicists from the start of their work, as have the pioneers behind CRISPR. But the challenges coming from successful gene editing and writing are too large to be outsourced to professional ethicists. These new technologies offer control over the code of life, but only we as a society can seize control over where these tools will take us.
A new injection is helping stave off RSV this season
In November 2021, Mickayla Wininger’s then one-month-old son, Malcolm, endured a terrifying bout with RSV, the respiratory syncytial (sin-SISH-uhl) virus—a common ailment that affects all age groups. Most people recover from mild, cold-like symptoms in a week or two, but RSV can be life-threatening in others, particularly infants.
Wininger, who lives in southern Illinois, was dressing Malcolm for bed when she noticed what seemed to be a minor irregularity with this breathing. She and her fiancé, Gavin McCullough, planned to take him to the hospital the next day. The matter became urgent when, in the morning, the boy’s breathing appeared to have stopped.
After they dialed 911, Malcolm started breathing again, but he ended up being hospitalized three times for RSV and defects in his heart. Eventually, he recovered fully from RSV, but “it was our worst nightmare coming to life,” Wininger recalled.
It’s a scenario that the federal government is taking steps to prevent. In July, the Food and Drug Administration approved a single-dose, long-acting injection to protect babies and toddlers. The injection, called Beyfortus, or nirsevimab, became available this October. It reduces the incidence of RSV in pre-term babies and other infants for their first RSV season. Children at highest risk for severe RSV are those who were born prematurely and have either chronic lung disease of prematurity or congenital heart disease. In those cases, RSV can progress to lower respiratory tract diseases such as pneumonia and bronchiolitis, or swelling of the lung’s small airway passages.
Each year, RSV is responsible for 2.1 million outpatient visits among children younger than five-years-old, 58,000 to 80,000 hospitalizations in this age group, and between 100 and 300 deaths, according to the Centers for Disease Control and Prevention. Transmitted through close contact with an infected person, the virus circulates on a seasonal basis in most regions of the country, typically emerging in the fall and peaking in the winter.
In August, however, the CDC issued a health advisory on a late-summer surge in severe cases of RSV among young children in Florida and Georgia. The agency predicts "increased RSV activity spreading north and west over the following two to three months.”
Infants are generally more susceptible to RSV than older people because their airways are very small, and their mechanisms to clear these passages are underdeveloped. RSV also causes mucus production and inflammation, which is more of a problem when the airway is smaller, said Jennifer Duchon, an associate professor of newborn medicine and pediatrics in the Icahn School of Medicine at Mount Sinai in New York.
In 2021 and 2022, RSV cases spiked, sending many to emergency departments. “RSV can cause serious disease in infants and some children and results in a large number of emergency department and physician office visits each year,” John Farley, director of the Office of Infectious Diseases in the FDA’s Center for Drug Evaluation and Research, said in a news release announcing the approval of the RSV drug. The decision “addresses the great need for products to help reduce the impact of RSV disease on children, families and the health care system.”
Sean O’Leary, chair of the committee on infectious diseases for the American Academy of Pediatrics, says that “we’ve never had a product like this for routine use in children, so this is very exciting news.” It is recommended for all kids under eight months old for their first RSV season. “I would encourage nirsevimab for all eligible children when it becomes available,” O’Leary said.
For those children at elevated risk of severe RSV and between the ages of 8 and 19 months, the CDC recommends one dose in their second RSV season.
The drug will be “really helpful to keep babies healthy and out of the hospital,” said O’Leary, a professor of pediatrics at the University of Colorado Anschutz Medical Campus/Children’s Hospital Colorado in Denver.
An antiviral drug called Synagis (palivizumab) has been an option to prevent serious RSV illness in high-risk infants since it was approved by the FDA in 1998. The injection must be given monthly during RSV season. However, its use is limited to “certain children considered at high risk for complications, does not help cure or treat children already suffering from serious RSV disease, and cannot prevent RSV infection,” according to the National Foundation for Infectious Diseases.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants.
Both nirsevimab and palivizumab are monoclonal antibodies that act against RSV. Monoclonal antibodies are lab-made proteins that mimic the immune system’s ability to fight off harmful pathogens such as viruses. A single intramuscular injection of nirsevimab preceding or during RSV season may provide protection.
The strategy with the new monoclonal antibody is “to extend protection to healthy infants who nonetheless are at risk because of their age, as well as infants with additional medical risk factors,” said Philippa Gordon, a pediatrician and infectious disease specialist in Brooklyn, New York, and medical adviser to Park Slope Parents, an online community support group.
No specific preventive measure is needed for older and healthier kids because they will develop active immunity, which is more durable. Meanwhile, older adults, who are also vulnerable to RSV, can receive one of two new vaccines. So can pregnant women, who pass on immunity to the fetus, Gordon said.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants, “nor is there any treatment other than giving oxygen or supportive care,” said Stanley Spinner, chief medical officer and vice president of Texas Children’s Pediatrics and Texas Children’s Urgent Care.
As with any virus, washing hands frequently and keeping infants and children away from sick people are the best defenses, Duchon said. This approach isn’t foolproof because viruses can run rampant in daycare centers, schools and parents’ workplaces, she added.
Mickayla Wininger, Malcolm’s mother, insists that family and friends wear masks, wash their hands and use hand sanitizer when they’re around her daughter and two sons. She doesn’t allow them to kiss or touch the children. Some people take it personally, but she would rather be safe than sorry.
Wininger recalls the severe anxiety caused by Malcolm's ordeal with RSV. After returning with her infant from his hospital stays, she was terrified to go to sleep. “My fiancé and I would trade shifts, so that someone was watching over our son 24 hours a day,” she said. “I was doing a night shift, so I would take caffeine pills to try and keep myself awake and would end up crashing early hours in the morning and wake up frantically thinking something happened to my son.”
Two years later, her anxiety has become more manageable, and Malcolm is doing well. “He is thriving now,” Wininger said. He recently had his second birthday and "is just the spunkiest boy you will ever meet. He looked death straight in the eyes and fought to be here today.”
Story by Big Think
For most of history, artificial intelligence (AI) has been relegated almost entirely to the realm of science fiction. Then, in late 2022, it burst into reality — seemingly out of nowhere — with the popular launch of ChatGPT, the generative AI chatbot that solves tricky problems, designs rockets, has deep conversations with users, and even aces the Bar exam.
But the truth is that before ChatGPT nabbed the public’s attention, AI was already here, and it was doing more important things than writing essays for lazy college students. Case in point: It was key to saving the lives of tens of millions of people.
AI-designed mRNA vaccines
As Dave Johnson, chief data and AI officer at Moderna, told MIT Technology Review‘s In Machines We Trust podcast in 2022, AI was integral to creating the company’s highly effective mRNA vaccine against COVID. Moderna and Pfizer/BioNTech’s mRNA vaccines collectively saved between 15 and 20 million lives, according to one estimate from 2022.
Johnson described how AI was hard at work at Moderna, well before COVID arose to infect billions. The pharmaceutical company focuses on finding mRNA therapies to fight off infectious disease, treat cancer, or thwart genetic illness, among other medical applications. Messenger RNA molecules are essentially molecular instructions for cells that tell them how to create specific proteins, which do everything from fighting infection, to catalyzing reactions, to relaying cellular messages.
Johnson and his team put AI and automated robots to work making lots of different mRNAs for scientists to experiment with. Moderna quickly went from making about 30 per month to more than one thousand. They then created AI algorithms to optimize mRNA to maximize protein production in the body — more bang for the biological buck.
For Johnson and his team’s next trick, they used AI to automate science, itself. Once Moderna’s scientists have an mRNA to experiment with, they do pre-clinical tests in the lab. They then pore over reams of data to see which mRNAs could progress to the next stage: animal trials. This process is long, repetitive, and soul-sucking — ill-suited to a creative scientist but great for a mindless AI algorithm. With scientists’ input, models were made to automate this tedious process.
“We don’t think about AI in the context of replacing humans,” says Dave Johnson, chief data and AI officer at Moderna. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
All these AI systems were in put in place over the past decade. Then COVID showed up. So when the genome sequence of the coronavirus was made public in January 2020, Moderna was off to the races pumping out and testing mRNAs that would tell cells how to manufacture the coronavirus’s spike protein so that the body’s immune system would recognize and destroy it. Within 42 days, the company had an mRNA vaccine ready to be tested in humans. It eventually went into hundreds of millions of arms.
Biotech harnesses the power of AI
Moderna is now turning its attention to other ailments that could be solved with mRNA, and the company is continuing to lean on AI. Scientists are still coming to Johnson with automation requests, which he happily obliges.
“We don’t think about AI in the context of replacing humans,” he told the Me, Myself, and AI podcast. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
Moderna, which was founded as a “digital biotech,” is undoubtedly the poster child of AI use in mRNA vaccines. Moderna recently signed a deal with IBM to use the company’s quantum computers as well as its proprietary generative AI, MoLFormer.
Moderna’s success is encouraging other companies to follow its example. In January, BioNTech, which partnered with Pfizer to make the other highly effective mRNA vaccine against COVID, acquired the company InstaDeep for $440 million to implement its machine learning AI across its mRNA medicine platform. And in May, Chinese technology giant Baidu announced an AI tool that designs super-optimized mRNA sequences in minutes. A nearly countless number of mRNA molecules can code for the same protein, but some are more stable and result in the production of more proteins. Baidu’s AI, called “LinearDesign,” finds these mRNAs. The company licensed the tool to French pharmaceutical company Sanofi.
Writing in the journal Accounts of Chemical Research in late 2021, Sebastian M. Castillo-Hair and Georg Seelig, computer engineers who focus on synthetic biology at the University of Washington, forecast that AI machine learning models will further accelerate the biotechnology research process, putting mRNA medicine into overdrive to the benefit of all.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.